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Abstract—Although existing surveillance cameras can identify
people, their utility is limited by the unavailability of any
direct camera-to-human communication. This paper proposes a
real-time end-to-end system to solve the problem of digitally
associating people in a camera view with their smartphones,
without knowing the phones’ IP/MAC addresses. The key idea
is using a person’s unique “context features”, extracted from
videos, as its sole address. The context address consists of:
motion features, e.g. walking velocity; and ambience features,
e.g. magnetic trend and Wi-Fi signal strengths. Once receiving
a broadcast packet from the camera, a user’s phone accepts it
only if its context address matches the phone’s sensor data.

We highlight three novel components in our system: (1)
definition of discriminative and noise-robust ambience features;
(2) effortless ambient sensing map generation; (3) a context
feature selection algorithm to dynamically choose lightweight
yet effective features which are encoded into a fixed-length
header. Real-world and simulated experiments are conducted for
different applications. Our system achieves a sending ratio of
98.5%, an acceptance precision of 93.4%, and a recall of 98.3%

with ten people. We believe this is a step towards direct camera-
to-human communication and will become a generic underlay to
various practical applications.

Index Terms—surveillance camera, ID association, communi-
cation, context feature, human addressing

I. INTRODUCTION

Video analytics has enabled widespread applications rang-

ing from security surveillance to business intelligence [1].

Although with existing analytic algorithms, a camera can

identify and track people under surveillance, its potential is

not fully explored without any direct communication from the

camera to people. Such communication requires an affiliation

between a person and its phone, which serves as the person’s

unique identity for personalized message delivery from the

camera. In this paper, we aim at solving the problem of

digitally associating people in the camera view with their

smartphones without knowing the phones’ IP/MAC addresses.

The capability of sending customized messages to a specific

person in a camera view can intelligently enhance public safety

and daily life quality. Imagine a person on a street is being

followed by someone with a suspicious behavior (shown in

Figure 1(a)). Potential crimes can be prevented by informing

the person about the threat. As shown in Figure 1(b), retailers

like Walmart, Target, etc. can improve customers’ experience

by delivering targeted ads and coupons in real time, according

to their interests or in-store behavior. Similarly, museums or

galleries (Figure 1(c)) can provide an interactive experience to

visitors by introducing interesting facts relevant to the exhibits

of their interests, e.g. when a visitor points to an exhibit,

through customized messages. Despite having an operator (be

it a human or AI agent) monitoring the surveillance feed,

the aforementioned benefits can happen only if a person can

receive messages from the camera.

One may argue: Why not simply ask people to register

with a face photo and then employ face recognition on the

surveillance video? The main reason is that faces are not

always visible due to facing direction or limited camera

resolution. Moreover, many people express discomfort with

uploading their profile photos, given that it may become their

permanent identifier [2]. Some cities even banned the use of

face recognition [3]. Another way of targeted message delivery

is to add short-range communication links (e.g. acoustics, light

and Bluetooth 5.1) and send messages once people approach a

beacon. The deployment and maintenance of the beacons are

costly. Also, message sending is simply triggered by relative

distances and is not related to any contextual information (e.g.

a person’s behavior or surrounding events), which means these

methods are not able to pinpoint an individual in a group.

Prior works have explored some schemes for human ID

association involving cameras and sensors. ID-Match [4] re-

quires wearing RFID tags and assigns a unique ID to each

individual in a Kinect camera view. [5] associates people in a

camera view with accelerometer readings from sensors worn

on their belts. Insight [6] demonstrates that a person can be

recognized using its motion patterns and clothing colors as a

temporary fingerprint. However, [4], [5] require extra hardware

and [4], [6] need the users to register beforehand. Also, neither

of [5], [6] implements a real-time system for applications

requiring direct camera-to-human communication. PHADE [7]

uses walking behavior as people’s temporary communication

address, suffering from large packet overhead since it transmits

large coefficient matrices. TAR [8] uses Bluetooth proximity

sensing to associate IDs and deliver targeted advertisements

in retailers. It requires Bluetooth on all users’ smartphones to

be on and continuously broadcast BLE signals, which raises

severe privacy concerns. Moreover, [5], [8] rely on a single

type of feature which is not suitable for various scenarios.

The key idea of our work is enabling camera-to-human com-

munication using a person’s context features as its address. The

context address consists of two types of features: (1) motion

features, e.g. walking velocity; and (2) ambience features, e.g.

magnetic trend and Wi-Fi signal strengths in user’s trajectory

history. This paper pursues to utilize the diversity in these con-
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Fig. 6. Wi-Fi Fingerprint map
for a reference position (shown by
solid red).

define the context features, which consist of motion and

ambience features. Since the context address is added into the

packet payload, we encode the features to reduce the overhead.

1) Motion Features: Since the tracking process generates

locations of each person, a person’s velocity can be computed

by applying Kalman filter on its locations [21], [22], and fur-

ther extracted into motion features with no extra computation

cost. We adopt the motion features defined in [7] and briefly

describe them for the sake of completeness.

Moving Or Not: On the video side, from the velocity

magnitude, it is straightforward to determine whether a person

is Moving Or Not. On the sensor side, sensed acceleration

is first projected onto gravity and its variance, within two

seconds, is calculated. If the variance is above a predefined

threshold, we can mark Moving or Not as “Yes”.

Relative Rotation: We define Relative Rotation as the

difference between a person’s walking directions at the be-

ginning and the end of a motion period. On the sensor side,

rotation rates obtained from gyroscope are first projected onto

the gravity and then integrated into Relative Rotation. For

comparison, we define an adaptive threshold (= Kl + B) to

compensate gyroscope drift, where l is the time length of the

motion period and K, B are parameters preset to 1◦/s and 25◦,

respectively. If the rotation difference is within the threshold,

we take it as a match.

2) Ambience Features: The visual tracking incidentally

generates a user’s location at each timestamp, which can be

used with ambient sensing maps to extract location-related

ambience features. For now, we assume that the server has a

Magnetic Trend map and a Wi-Fi Fingerprint map, and will

explain why we select these feature types and how we generate

the maps in Section III-F.

Magnetic Trend: Magnetic Trend represents the difference

between magnetometer readings in gravity direction at any two

locations. For each pair of different locations, the difference

is represented by a normal distribution using its mean (µ)

and standard deviation (σ) and stored in Magnetic Trend map.

Figure 5 shows an example of increasing Magnetic Trend (i.e.

µ > 0) from location A to B, where the blocks are different

locations and red indicates larger projected magnetometer

readings. When a person moves from one location to another

during a motion period, a (µ, σ) pair is extracted by looking

up Magnetic Trend map with its two locations and used as a

candidate feature.

On the sensor side, the phone periodically samples the

Feature Type ✡✟� ✡✟✁ Content Total

Moving Or Not 

3 5

- 1 9

Relative Rotation 5 18 31

Magnetic Trend 5 18 31

Wi-Fi Fingerprint - ~75 ~83

TABLE I
PAYLOAD COST OF EACH FEATURE IN TERMS OF NUMBER OF BITS.

magnetometer and gravity readings. The 3D magnetometer

readings are first projected to the current gravity to eliminate

the influence of the phone pose. The projected magnetometer

readings are then used to calculate the difference and to

compare with (µ, σ) from the server side. If the difference

from the sensor side lies in the range µ ± λσ (λ = 2.5, i.e.

98.8% confidence interval), we consider the sensor readings

match with this Magnetic Trend feature.

Wi-Fi Fingerprint: In Wi-Fi Fingerprint map, each location

in the area contains a series of Wi-Fi signal strength readings

of Nw (preset to 15) different MACs, i.e. Wi-Fi Fingerprint,

as well as a distinguishable region. For a specific location

(defined as reference position), its distinguishable region rep-

resents the locations with Wi-Fi fingerprints that have large

Euclidean distances from the Wi-Fi fingerprint of the reference

position. Based on the tracking results at a certain timestamp,

if a target user is tracked at a reference position with a valid

term in Wi-Fi Fingerprint map while some other users are in

the distinguishable region, Wi-Fi Fingerprint can be extracted

as a candidate feature to distinguish the target. We carefully

selected Nw Wi-Fi’s that are stable in each block and have the

most distinguishability among different locations. Please refer

to Section III-F for more details.

Figure 6 shows an example of a Wi-Fi Fingerprint map.

Suppose that user 1, at the reference position, is our target to

send a message. User 1 can be distinguished from user 2 using

Wi-Fi Fingerprint since user 2 presents in the distinguishable

region of the reference position, while user 1 cannot be

distinguished from user 3. Note that the distinguishable region

is around 5 meters away from the reference position, which

is larger than the resolution of some existing Wi-Fi based

localization scheme. This is to keep Wi-Fi Fingerprint noise-

robust and ensure its reliability.

3) Context Encoding: To minimize the payload overhead,

each feature is compressed into a bit string. The encoded

feature structure and corresponding payload cost in bits are

shown in Table I. 3 bits represent the feature type. 5 bits

represent each timestamp (∆t1 or ∆t2), which is used by

the client to search for corresponding sensor readings. Either

one or two timestamps are needed, depending on whether the

feature contains an absolute or relative value. The content

length varies among different features. Moving Or Not needs

1 bit to represent two states. Relative Rotation needs 9 bits

to represent an angle (0 - 360◦). Magnetic Trend uses 18
bits – 9 bits for µ and σ each. Wi-Fi Fingerprint uses, on

average, 75 bits to specify 15 Wi-Fi signal strength values

with different MAC addresses. Note that this is not a fixed cost

since we encode the Wi-Fi signal strengths using a variant of
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Feature User 2 User 3 User 4 Cost

!"#$%&'()*(+#,-./0 1 0 0 9

!"1'&2,%3(4*2&5-.60 0 1 1 31

!7281,%$2(7#,1,%#&-./0 0 0 1 31

!9%:%(:%&'2*;*%&,-.<0 1 1 0 46

!9%:%(:%&'2*;*%&,-.=0 0 1 0 83

: : : : :

✞

✞

✞

TABLE II
EXAMPLE FEATURE TABLE T FOR TARGET USER 1 AND PAYLOAD COST

FOR EACH FEATURE. SELECTED FEATURES MARKED BY TICKS.

Huffman coding [23] based on empirical frequencies. Details

are omitted in the interest of space. The MAC addresses are

sent only once when a user enters the covered area so the cost

is not included.

C. Context Selection

Once the context features are extracted and encoded into the

format specified above, the next task is to select the optimal

set of features capable of distinguishing an individual from

other people in the video.

Feature Table Construction: We define binary function D,

where D(f ′, f ′′) = 1 if two features f ′ and f ′′ are different.

f ′(= f typek
personi

(
−→
t )) and f ′′(= f typek

personj
(
−→
t )) are features with

the same type and timestamps, but for different people. We

use the same comparison in Section III-B to evaluate D.

Based on D, we build a feature table T for each target that

we want to send messages to. T is of size m×n, where each

row is for one feature with a certain type and some timestamps,

and each column is for a person besides the target. Since in

our experiment (Section IV-A), we use the features from last

30 seconds and distinguish among ten users, a typical size of

T is 876× 9. Each entry Tij is 1 only if the jth user can be

discriminated from the target by using the ith feature. Each

feature is also associated with a pre-defined payload cost, Ci.

An example feature table T is shown in Table II. T11 = 1
means that user 2 can be distinguished from user 1 by Moving

Or Not at time ~t1.

To determine the value for Tij , first we need to check

whether the features f i for both the target and the other user

is valid. For a motion feature, we follow the criteria in [7]. For

an ambience feature, we define “valid” as that a corresponding

value can be found for both users from the map.

Secondly, due to time delay inherited from video streaming

and packet propagation, a recorded timestamp may shift by

a small amount from its actual value. We want to consider

only those features which are stable for the target across a

shift period ∆s (= 0.5s). Namely, a feature f i at time
−→
t =

(∆t1,∆t2), is considered stable for T if

∀s ∈ [0,∆s], D(f i
target(

−→
t ), f i

target(
−−→
t+ s)) = 0. (1)

Finally, we also consider the time shift when comparing the

target and other users. A feature is discriminative between the

target and user j when

∀s ∈ [0,∆s], D(f i
target(

−→
t ), f i

j(
−−→
t+ s)) = 1. (2)

As a result, Tij = 1 only if all the above three conditions are

satisfied. All features in T compose a set F (= {f1, . . . , fm}).
Selection Algorithm: To select the most effective features,

a naive way is to decreasingly sort all candidate features ac-

Algorithm 1: Context Selection

Initial selected feature set, I ← {}
Initial distinguishing power, P ← ~0
Number of iterations, niter ← 0
while niter < nmax do

for each feature k ∈ I ∪ {∅}
for each feature l ∈ I ∪ {∅}
I ′ ← (I \ k) ∪ l
P ′ ← sort(

∑
i∈I′ Ti·)

if P lexicographically smaller than P ′ and
∑

i∈I′ Ci ≤ Cm

I ′′ ← I ′, P ← P ′

I ← I ′′, niter ← niter + 1

cording to their distinguishability/cost ratio, Hi =
∑

j Tij/Ci.

Then the features are chosen in this order until the total cost

reaches a limit Cm (= 40 bytes). However, this method may

fail when a specific user cannot be discriminated from the

target by these selected features, even if
∑

i Hi is large.

Therefore, we define distinguishing power vector P as

the sorted sum of selected rows in feature table T , and

lexicographically maximize P in a greedy manner under the

limit of total payload cost. This is formulated as:

maxP = sort(
∑

i∈I

Ti·), s.t.
∑

i∈I

Ci ≤ Cm, (3)

where sort() ascendingly sorts the elements of a vector, and

Ti· is the i-th row of matrix T . I ⊆ F is selected feature set.

Lexicographical maximization of this sorted vector P guar-

antees that we have high distinguishability even for the least

distinguishable user j, where j is the index of the smallest

element in
∑

i∈I Ti·. We can successfully send the packet only

when the normalized distinguishing power P̂ = P1/|I| (note

that P is already sorted and P1 is the first element in P )

is above a threshold (0.1). Otherwise, the attempt of sending

the packet fails. A sending ratio is defined as the number of

packets successfully sent over the total number of attempts.

We formulate a local search strategy (Algorithm 1) to solve

this computationally hard optimization problem. It begins with

an empty set and keeps applying local changes to the selected

feature set I by adding, removing or substituting one feature

at a time. The iteration stops when niter reaches a predefined

limit nmax. For each iteration, we greedily maximize the

increase of P by enumeration. This converged set I is used

as the context address for the target user.

D. Packet Encapsulation

In the context address header, some other fields are required.

The header also includes the normalized distinguishing power

P̂ (7 bits) as a threshold for context matching on the client

side. Moreover, depending on the completeness of stored maps

and recent locations of the target user, the server occasionally

requests the target to voluntarily upload its magnetometer data

and/or scanned Wi-Fi signal strengths. The solicitation for

this data uses 2 bits to convey whether each type is needed.

Alongside this, the transaction ID of this request (8 bits) is

used to keep track of the sensor data received from the users

later on. The context address header, containing all the above
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(a) (b)
Fig. 9. Experiment scenario. (a) Areas covered by three cameras and
corresponding camera positions. (b) An example frame in a mimic gallery.

Stage Time in Seconds

Tracking 1.5

Context extraction 1.3

Context selection and packaging 0.2

Client-side processing 0.2

Total 3.2

TABLE III
END-TO-END COMPUTATION TIME.

the distinguishable region of the reference position.

Figure 8 shows an example of a Wi-Fi Fingerprint map for

a reference position (marked by a red cross) at 2, 4 and 6
minutes. The walkable region is shown by light shade and the

distinguishable region by dark shade. With time, as more and

more data is contributed by users, the distinguishable region

grows, showing that the difference between the reference

position and the other blocks becomes clearer. Thus, if a target

user is tracked located at the reference position in this map

while another user is in the distinguishable region, this Wi-Fi

Fingerprint feature can be selected to distinguish these two

users.

In real cases, the server does not need to frequently

send solicitation requests. Once the collected dataset is large

enough, the server holds back on solicitation for that area. An

expiration time can also be set to void outdated sensing data.

In our experiments, we ignore these two factors due to the

short experiment period.

IV. EVALUATION

A. Experimental Setup

In our real-world experiment, three Samsung Galaxy S5

smartphones are used as IP cameras to capture and stream

videos at a frame rate of 13 fps, a bit rate of 2000 kbps,

and a resolution of 800 × 480. We set up our server on

three PCs with dual NVIDIA GTX 1080 Ti SLI, and run

MATLAB and C++ programs on each. A software called

ClockSynchro [24] is used to synchronize these computers.

Google Pixel XL smartphones are employed as clients, which

log accelerometer, gyroscope, gravity, magnetometer readings,

and Wi-Fi scan results at 400Hz, 400Hz, 200Hz, 50Hz and

1Hz respectively. They also run our Android client app to

receive packets.

We evaluated our system in a real-world scenario of an “art

gallery” in a university lobby with a walkable area of 107m2.

The area covered by each camera is shown in Figure 9(a)

with shades and the camera positions are marked with crosses.

We invited 10 volunteers to naturally walk around or stop by
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Fig. 10. Overall precision, recall and sending ratio of the system.

at the paintings as they pleased, with a smartphone put in

their pockets. Figure 9(b) shows an example frame from one

camera, with 10 users in the gallery. We tested the utility of

the context address by sending messages to all 10 users every

two seconds, i.e. 6000 messages sent in a 20-minute session.

B. Performance Results

We intend to concentrate on the following aspects:

(1) System Overall Performance

We evaluate the overall precision and recall rate of our

system. The precision represents the ratio of the messages

accepted by a user which are actually targeted for it. The

recall is the ratio of the messages targeted for a specific

user which are successfully accepted by it. Figure 10 shows

that, as magnetometer and Wi-Fi readings gradually contribute

to the map generating process, the performance starts to

improve after about 10 minutes. After the cold start period,

the average precision of our system is 93.4% throughout the

last 10 minutes while the recall rate is 98.3%. Moreover, the

sending ratio (defined in Section III-C) increases sharply and

reaches an average of 98.5%. The combination of motion

and ambience features leads to an overall high precision and

recall rate, showing that the context features used have a high

distinguishability and the maps are stable over time.

Table III shows the median of computation time for different

processing stages through 20 minutes. The total computation

time is 3.2 seconds, in which the tracking process takes the

largest portion, i.e. 1.5 seconds. The tracking time could be

shrunk if a faster and more accurate tracking scheme can

be introduced into our system. And other stages, i.e. context

extraction, context selection and packaging, and client side

processing, take 1.3, 0.2 and 0.2 seconds respectively. This

demonstrates the efficiency of our context selection algorithm.

(2) Packet Overhead

We set the maximum number of bytes for the context

address header to 20, 40 and 100, and evaluate how it affects

the performance during the last 10 minutes. Figure 11 shows

the results. When the limit is set to 40 bytes (i.e. same as an

IPv6 header), it already achieves similar performance as it’s

extended to 100 bytes. In PHADE [7], the packet overhead is

a severe problem since the large coefficient matrix needs to be

sent out, no matter how many users that the system is trying to

communicate with. For example, same as in our experiment,

if PHADE is sending messages to 10 users at the same time,

the average packet overhead for each user is 200 floats, i.e.
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Fig. 16. Video simulation scenario.

V. DISCUSSION

Limitations: As our system highly depends on the per-

formance of pedestrian detection and tracking schemes, it

may not work well in scenarios with lots of obstacles in the

environment and human mutual occlusion. If the tracking fails

occasionally, the user is treated as a new person just entering

the area. Therefore, the chance of successfully delivering the

messages is affected.

Other possible features: Since our system has explored

multiple ways to represent features (e.g. single data point,

trend, and fingerprint), it can also be extended to use other

features, such as light intensity, walking direction, step phase,

Bluetooth, 5G signals, etc. They may contribute differently

in various use cases, for example, step phase can be used to

distinguish people walking along a similar trajectory.

Difference with indoor localization: One may wonder if

we built another indoor localization system. The short answer

is “No”. Our system, as a general framework for direct camera-

to-human communication, can be adapted into more various

application scenarios, as discussed in Section I, including

indoor localization. Some systems with similar communication

purposes [7] have demonstrated these applications with real-

world evaluations. Even if we had a perfect indoor localization

system, this location information is not suitable for a commu-

nication system like ours. One main reason is the potential

privacy leakage from broadcasting location information.

Broadcast methodology: In our system implementation, we

use Wi-Fi as the broadcast media. But there are also other

options, such as LTE Direct, BLE advertisement, etc.

VI. RELATED WORK

Message delivery based on visual tracking. Recent works

have built some communication paths to send messages to a

targeted person in surveillance camera views. PHADE [7] uses

people’s walking behaviors as their temporary communication

addresses. However, in some crowded scenarios, merely using

motion features does not provide enough distinguishability to

represent each person. Also, PHADE transmits large coeffi-

cient matrices along with address codes, which introduces a

non-negligible packet overhead. On the other hand, our system

utilizes both motion and ambience features to obtain higher

distinguishing ability and introduces a context address header

with a small fixed length while providing accurate message

targeting. Another work, TAR [8] uses a combination of multi-

camera human tracking and Bluetooth proximity sensing to

conduct ID association and deliver targeted advertisements.

When some people are in close proximity, TAR needs BLE

readings for a longer period to identify a person among

them. However, the ability to discriminate a user from its

companions is insufficient since Bluetooth proximity is the

only feature used. Our system can distinguish a person from a

denser group relying on richer context features, even if some

people locate closely or behave similarly. Also, it requires

Bluetooth on all users’ smartphones to be on and continuously

broadcast BLE signals, which raises severe privacy concerns.

Human ID association. Existing schemes for human ID

association use various techniques and devices for identifica-

tion. [5] has used the accelerometer readings from a sensor

worn on a person’s belt to develop an ID matching algorithm

for associating people. Another work, Insight [6], uses the

motion patterns and clothing colors to recognize people. These

patterns serve as a temporary fingerprint for an individual.

Both of these schemes depend on the users to upload their

sensor data while we can still correctly identify a user even

if it does not upload any data. Also, in contrast to [5], [6],

we have implemented our idea into a real-time end-to-end

system. Among other approaches, ID-Match [4] can recognize

and correctly assign IDs to individuals using relative motion

paths of RFID tags worn by people and 3D camera. For

outdoor environments, RFID and BLE are combined with a

stereo-based identification system in [25]. In these approaches,

the identification relies on users wearing RFID tags or BLE

beacons. It is hard to ensure everyone carries its tag in a large

public area, hence rendering these schemes infeasible for such

environments. Our system associates a user in the camera view

with its smartphone without requiring tags or preregistration.

Camera sensor combination. Research based on combin-

ing cameras and sensors has been popular in recent past with

widespread applications. Gabriel [26] uses image capturing

and mobile sensing to develop a cognitive assistance system.

Smartphone’s motion and light sensors combined with cameras

allow authors in [27] to enhance the biometric authentication

process through facial recognition. Overlay [28] uses a fusion

of a smartphone camera and sensors to enable augmented

reality on the phone via building a geometric representation

of the environment. We introduce the novel concept of using

cameras and smartphone sensors to allow communication

between the camera and people in the camera view with

applications in public safety and other day-to-day activities.

VII. ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their

insightful suggestions and comments, and Purdue Research

Foundation for partially funding this research.

VIII. CONCLUSION

This paper solves the problem of digitally associating people

in a camera view to their smartphones without knowing their

IP/MAC addresses. A fully operational real-time prototype

system is developed, which utilizes a context address consist-

ing of motion patterns and ambience to identify each person.

We deploy an efficient context selection algorithm to choose

discriminative features and fit them into a fixed-length header.

We also generate ambient sensing maps in an effortless way.

Our system achieves a sending ratio of 98.5%, an acceptance

precision of 93.4%, and a recall of 98.3%.
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