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Abstract—In smart homes, when an actuator’s state changes,
it sends an event notification to the IoT hub to report this
change (e.g., the door is unlocked). Prior works have shown
that event notifications are vulnerable to spoofing and masking
attacks. In event spoofing, an adversary reports to the IoT hub
a fake event notification that did not physically occur. In event
masking, an adversary suppresses the notification of an event that
physically occurred. These attacks create inconsistencies between
physical and cyber states of actuators, enabling an adversary to
indirectly gain control over safety-critical devices by triggering
IoT apps. To mitigate these attacks, event verification systems
(EVS), or broadly IoT anomaly detection systems, leverage
physical event fingerprints that describe the relations between
events and their influence on sensor readings. However, smart
homes have complex physical interactions between events and
sensors that characterize the event fingerprints. Our study of
the recent EVS, unfortunately, has revealed that they widely
ignore such interactions, which enables an adversary to evade
these systems and launch successful event spoofing and masking
attacks without getting detected.

In this paper, we first explore the evadable physical event
fingerprints and show that an adversary can realize them to
bypass the EVS given the same threat model. We develop two
defenses, EVS software patching and sensor placement, with the
interplay of physical modeling and formal analysis, to generate
robust physical event fingerprints and demonstrate how they
can be integrated into the EVS. We evaluate the effectiveness
of our approach in two smart home settings that contain 12
actuators and 16 sensors when two different state-of-the-art EVS
are deployed. Our experiments demonstrate that 71% of their
physical fingerprints are vulnerable to evasion. By incorporating
our approach, they build robust physical event fingerprints, and
thus, properly mitigate realistic attack vectors.

I. INTRODUCTION

Smart homes include various sensors and actuators. Sensors
continuously measure physical channels (e.g., sound) and
output numerical or boolean-typed readings. Actuators influence
physical channels by executing actuation commands. When
an actuation command is invoked, the actuator changes its
state and sends an event notification to the IoT hub to report
this change [17], [38]. For instance, when the user opens the
window, the window reports the window-open event.

Event notifications are essential for the seamless operation
of smart homes for two reasons. First, the IoT hub monitors

the actuator states through these notifications and notifies the
user of any important change (e.g., when the fire alarm sounds).
Second, the IoT hub activates other actuators based on the IoT
apps installed in the smart home, e.g., unlocks the door and turns
on the lights when the alarm-on notification is received [18].

Prior works have shown that event notifications are vul-
nerable to spoofing and masking attacks [31], [84], [87].
Event spoofing occurs when an adversary reports a fake event
notification that did not physically occur, e.g., the adversary
spoofs an alarm-on event where the alarm’s physical state
is off. Event masking occurs when an adversary prevents an
actuator from sending the notification of an event that physically
occurred, e.g., the adversary intercepts the window-open event
notification when the window physically opens.

Existing works have shown that an adversary can conduct
event spoofing and masking attacks in different ways. One
line of work exploits phantom devices, which are computer
programs that mimic a real physical device in a smart home, to
conduct these attacks [83], [87]. Another line of work shows
the adversary can use malicious IoT apps due to the design
flaws in IoT programming frameworks [31], [75], [84]. These
attacks are stealthy as they do not require the physical control
of devices, but they allow an adversary to perform remote event
spoofing and masking attacks.

Event spoofing and masking attacks enable an adversary
to create discrepancies between actuators’ cyber and physical
states. These discrepancies allow an adversary to stealthily gain
control over sensitive devices through IoT apps. For instance,
an adversary can unlock the patio door by spoofing a light-on
event if an app opens the patio door when the lights turn on.

There is a growing interest in event verification systems
(EVS) to protect smart homes from event spoofing and masking
attacks through physical event fingerprints [11], [12], [34],
[67], [68], [81]. EVS extract physical event fingerprints that
define the relations between events and sensor readings to flag
inconsistencies between cyber and physical actuator states at
run-time. However, complex physical relations exist between
events and sensor readings [19], [27], [56]: (1) An event
influences single or multiple physical channels, (2) a sensor
measures the influence from a single event or the aggregated
influence from multiple events, and (3) the sensor readings
depend on the distance between an actuator and sensor where
they decrease with an increasing distance. To build accurate
event fingerprints, such physical relations must be incorporated
into EVS. Unfortunately, our study of state-of-the-art EVS has
shown they broadly ignore this requirement. We show that
these relations enable evasion attacks against EVS, where an
adversary launches successful spoofing and masking attacks.
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In this paper, we propose a system to make EVS robust
against evasion attacks. Given the physical event fingerprints
generated by an EVS, we first identify if they are vulnerable
to evasion by analyzing the physical relations between events
and sensor readings. For each evadable physical fingerprint,
we patch EVS software by introducing additional fingerprints,
which define the relation between multiple events and their
joint influence on sensor readings. However, we show that
software patching is limited in preventing attacks if multiple
events influence sensor readings similarly. To address this,
we introduce sensor location patching, a security-by-design
approach, which finds sensor placement regions that ensure
events have unique fingerprints. Through the combination of
software patching and sensor location patching, we derive robust
fingerprints that can detect evasion attacks against EVS.

We evaluate our defense in two real smart home testbeds, a
studio apartment with 7 actuators and 9 sensors, and a patient
room with 5 actuators and 7 sensors. We deploy two state-
of-the-art EVS (HAWatcher [34] and Peeves [11]) in these
settings. We identify 75% of the physical fingerprints extracted
by HAWatcher and 67% of them extracted by Peeves are
vulnerable to evasion. We show that software patching prevents
64% of the evasion attacks against HAWatcher, and 40% of
the attacks against Peeves. We then conduct location patching
by relocating two sensors in the studio apartment and two
sensors in the patient room. The fingerprints derived after
sensor location patching prevent all remaining evasion attacks,
ensuring an adversary cannot evade HAWatcher and Peeves.

In this work, we make the following contributions:

• We propose an algorithm that discovers the evadable
physical event fingerprints by analyzing if they can be
satisfied or concealed by the influences from other events.

• We develop two defenses against evasion attacks, EVS
software patching and sensor location patching. Software
patching is an automated method that introduces new
physical fingerprints into EVS. Sensor location patching is
a security-by-design approach complementary to software
patching, which generates a sensor placement that ensures
physical fingerprints are unique to an event.

• We evaluate our defenses with two separate EVS deployed
in two smart homes with a total of 12 actuators and 16
sensors. Our evaluation demonstrates 71% of the physical
fingerprints are susceptible to evasion attacks, and our
system can successfully prevent all.

• Our system is available at
https://github.com/purseclab/EVS_Evasion

for public use and validation.

II. BACKGROUND

A. Event Spoofing and Masking Attacks

Smart homes rely on an IoT hub that monitors and
controls the IoT sensors and actuators. Sensors continuously
measure physical channels and output numerical or boolean-
typed readings, e.g., a sound sensor measures ambient sound.
Actuators influence physical channels by executing an actuation
command, e.g., heater-on changes the temperature. We refer
to events as actuator state changes that are triggered through
IoT apps, direct physical interaction of users with actuators, or
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Fig. 1: Overview of event verification systems (EVS)

user interfaces such as companion apps and virtual assistants.
For instance, a user can manually lock a smart door, can issue
a “lock my door” voice command, and can use an IoT app
that locks the door when they leave home. When a physical
event occurs, the actuator sends an event notification to the
hub to notify its state change, e.g., the door sends “door is
locked” notification to the hub after executing the command.
The hub updates the actuator’s cyber state upon receiving the
notification. The physical events are the phenomena that happen
in the smart home, and the event notification represents how the
IoT hub monitors the cyber state of that physical phenomena.

Prior works have shown that smart homes are vulnerable to
event spoofing and masking attacks [31], [84], [87] (Detailed in
Section III). Event spoofing occurs when an adversary reports
a fake event that has not physically occurred. For instance, the
adversary spoofs the light-on event, although the light’s physical
state is off. By spoofing light-on, the adversary can physically
unlock the patio door if there is an IoT app that unlocks the
patio door when the light turns on. Event masking occurs
when the adversary suppresses the notification of a physical
event. In this way, they prevent the IoT hub from receiving
event notifications and impede invoking device actuations. For
instance, they mask the alarm-on notification when there is a
fire, and block an app that unlocks the door for fire safety.

B. Event Verification Systems

To protect smart homes against event spoofing and masking,
there is an increasing interest in event verification systems
(EVS) (and more broadly, IoT anomaly detection systems) from
both the research community [11], [12], [13], [22], [34], [64],
[67], [68], [25] and industry [39], [63], [70]. These systems use
physical event fingerprints between events and their influence on
sensor readings to verify event notifications. Broadly, we group
EVS into two types based on how they learn event fingerprints,
rule-based (R-EVS), and ML-based (ML-EVS). Figure 1 shows
their two common stages: ( 1 ) physical fingerprint extraction
and ( 2 ) physical fingerprint checking.

Physical Fingerprint Extraction. In this stage, EVS collect
sensor readings when each event occurs. R-EVS extract rules
from the collected traces in the form of statistical correlations
between an event (E) and its influence on sensor readings (S).
For example, R-EVS learn that when a light turns on, the read-
ings of two illuminance sensors change, and extract the follow-
ing physical fingerprint: Rule : light-on↔ {S1.Illum = High,
S2.Illum = High}. R-EVS often map numerical sensor measure-
ments into binary (high/low or increase/decrease) or categorical
(high/medium/low) values since environmental factors may
introduce noise in the numerical sensor readings.

ML-EVS learn a physical fingerprint model for each event
using features extracted from sensor readings. For instance,
a light-on model is learned based on the features (e.g., min,

2

https://github.com/purseclab/EVS_Evasion


max, mean, sum, stdev) extracted from numerical illuminance
sensor readings. To account for environmental noise, ML-EVS
pre-process the sensor data by applying smoothing filters and
signal processing (e.g. moving average) for noise reduction.

Physical Fingerprint Checking. EVS use physical fingerprints
to detect event spoofing and masking attacks at run-time. R-EVS
check if the event’s rule is satisfied when an event notification is
received. For instance, when a light-on notification is received,
R-EVS check if the illuminance sensors measure the expected
high readings. If the sensor readings deviate from what rules
dictate, they deem light-on event has not physically occurred
and flag a spoofing attack. To detect event masking, R-EVS
continuously monitor the sensor readings and check if they map
to an event’s rule. If the sensor readings match an event’s rule,
but an event notification is not received, they flag a masking
attack. For instance, if the sound sensors measure high ambient
sound but an alarm-on event notification is not received, they
detect an event masking attack.

To detect event spoofing, ML-EVS predict if a physical event
occurred or not from runtime sensor readings based on the
learned event model. If a notification is received but the model
predicts the event has not occurred, ML-EVS flag a spoofing
attack. For event masking, they continuously evaluate each
event model with the features extracted from sensor readings.
If the event model predicts a physical event has occurred, yet,
its notification is not received, ML-EVS flag a masking attack.

III. THREAT MODEL

EVS, in their threat model, assume that an adversary can
conduct event spoofing and event masking attacks [11], [12],
[34], [67], [68]. The adversary can conduct such attacks through
(1) phantom devices or (2) malicious apps. First, a phantom
device is a computer program that mimics a real physical
device [87]. It enables the adversary to remotely communicate
with the IoT hub using credentials (device ID and legitimacy
information) stolen from a real device. An adversary can steal
this information through (1) public data from company websites
(e.g., Github repositories) [83] and (2) vulnerable IoT apps [84].
Second, the adversary can use malicious IoT apps that exploit
the design vulnerabilities in IoT programming frameworks [31],
[75]. These apps subvert the intended use of programming APIs
to create legitimate event objects and communicate with the IoT
hub. In these attacks, the adversary does not inject commands
to physically control devices, but stealthily perform remote
event spoofing or masking.

Prior works on EVS also assume adversaries have no
physical access to the devices, and the sensors used in EVS for
attack detection are trusted. The sensors are trusted due to two
main reasons. First, many sensors send periodic readings to
the hub, which requires the adversary to continuously mask the
real sensor’s readings and spoof the injected values. Second,
there have been various systems proposed to detect sensor
attacks [12], [25], [30], [81]. Yet, we note that if an adversary is
able to spoof all events and sensor readings, all attacks become
trivial as the adversary can evade both event verification and
sensor spoofing detection systems.

The adversary’s goal is to evade EVS by spoofing and
masking events without getting detected. For this, we assume
the adversary passively sniffs the smart home communications

without intercepting or injecting any messages. The adversary
can recognize events in real-time over unencrypted or encrypted
device communication through existing IoT network analysis
tools [2], [8], [40], [71], [85]. This allows the adversary
to determine the time to conduct the attacks, maximizing
their likelihood to evade EVS. To determine which event
to spoof or mask, an adversary can predict events’ physical
influences on sensor measurements and spoof or mask events
accordingly, or a knowledgeable adversary who knows the
physical event fingerprints of EVS can smartly select the event
(Detailed in Section IV). Our knowledgeable adversary is
similar to the opportunistic attacker in [11], [12] that knows
EVS parameters and identifies opportunities to evade EVS.
Here, the opportunistic attacker aims to minimize the time they
have to wait before spoofing or masking, while we do not
bound the adversary’s wait time. This is because the adversary
can conduct remote attacks with minimal effort.

IV. MOTIVATION

Event spoofing and masking attacks create inconsistencies
between the physical and cyber device states. By leveraging
these inconsistencies, an adversary can indirectly gain control
over safety-critical devices and prevent invoking the user’s
intended device actuations, putting the user and environment at
risk. Therefore, there is a growing interest in EVS to detect event
spoofing and masking attacks through physical fingerprints [4],
[11], [12], [25], [34], [58], [64], [67], [68].

EVS infer the physical event fingerprints that describe
the relations between events and sensor readings to detect
anomalies in physical and cyber device states. However,
complex physical relations exist between events and sensor
readings [19], [27], [56]: (1) An event may influence single
or multiple physical channels (e.g., the TV-on event introduces
sound and illuminance), (2) a sensor measures the influence of
single or multiple events (e.g., an illuminance sensor measures
the aggregated illuminance from TV-on and light-on), and (3)
when the distance between an actuator and sensor increases, the
event’s influence on sensor readings monotonically decreases.

We argue that to properly detect the event spoofing and
masking attacks, such physical properties must be learned,
incorporated, and assessed in EVS. Unfortunately, state-of-the-
art EVS [11], [12], [25], [34], [67], [68] broadly ignore this
requirement, enabling an adversary to evade EVS, launching
successful spoofing and masking attacks. Below, we detail three
evasion attacks that exploit the physical properties between
events and sensor readings to bypass EVS given the same threat
model. We introduce a set of techniques in Section V that
require the interplay of physical fingerprint analysis, software
patching, and sensor placement to discover evadable fingerprints
and mitigate them via robust fingerprints.
Evasion1: Fingerprint Encapsulation (Figure 2(a)). If an
event’s influence on sensor measurements satisfies the finger-
print of another event, the adversary can conduct a spoofing
attack when the physical event occurs at run-time and evade
EVS. For instance, in Figure 2(a), EVS learn that the TV-on
event influences the readings of the sound (S1) and illuminance
(S2) sensors, and the light-on event similarly influences S2’s
readings. At run-time, when TV-on physically occurs, the sensors
measure its influence. At this time, if the adversary spoofs
light-on when its physical state is off, EVS cannot detect
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Fig. 2: Illustration of the evasion attacks against Event Verification Systems

this attack as S2 measures the influence from TV-on. Thus,
the IoT hub thinks that the light’s cyber state is on; yet, its
physical state is off. Through this, the adversary can trigger
apps conditioned on light-on, e.g., an app that unlocks the
patio door, assuming the user arrived home.

This attack’s root cause is that an event’s (Ei) influence on
sensors encapsulates another event’s (Ej) influence. Formally,
R-EVS are vulnerable to this attack if there are two rules:

Rule1 : Ei ↔ {Si,1 = High, Si,2 = High, ..., Si,n = High}
Rule2 : Ej ↔ {Sj,1 = High, Sj,2 = High, ..., Sj,m = High}

{Sj,1, Sj,2, ..., Sj,m} ⊆ {Si,1, Si,2, ..., Si,n}

Here, Sa,b indicates the bth sensor’s measurement when event
a occurs. In ML-EVS, this attack happens if the fingerprint
model for Ej predicts Ej has occurred when Ei physically occurs.

Evasion2: Fingerprint Concealment (Figure 2(b)). Two
events may have opposing influences on one or more sensor’s
readings; one event increases and another event decreases them.
For instance, in Figure 2(b), AC-on decreases the temperature
sensor’s readings whereas oven-on increases them. When these
events occur, they conceal each other’s impact on sensor
readings and prevent EVS from detecting masking attacks
launched on one or both of these events. Through this, an IoT
hub thinks physically occurred events have not occurred. This
prevents triggering the IoT apps conditioned on these events.
For instance, it may prevent an app that turns off the oven as
the oven’s cyber state is already off, and create a fire hazard [3].

This attack occurs in R-EVS if there are two rules that
include the following expected sensor readings.

Ei ↔ S = Inc and Ej ↔ S = Dec

When Ei and Ej occur, the sensor S may not measure any
increase (Inc) or decrease (Dec). When the adversary masks
any of these events’ notifications, R-EVS cannot detect it as
an expected sensor value in the rule is not satisfied. Although
there could be multiple sensors that measure the events, R-EVS

often do not raise alarms when their rules are partially satisfied
to minimize false alarms. In ML-EVS, this attack occurs if one
or both event’s model outputs event-not-occurred when the
events physically occur due to their opposing influence.
Evasion3: Fingerprint Indistinguishability (Figure 2(c)).
When two events have similar physical fingerprints, an adver-
sary can mask a physically occurred event’s notification and
spoof the other event which has not occurred. We call this attack
mask-and-spoof. For instance, in Figure 2(c), both monitor-on
and light-on events only influence the illuminance sensor’s
readings. When monitor-on occurs, the adversary masks its
notification and spoofs light-on. EVS cannot detect this as the
illuminance sensor measures the monitor’s influence. Thus, the
IoT hub thinks the light is on and the monitor is off, but in the
physical world, the light is off and the monitor is on. Through
this, the adversary can prevent triggering the apps conditioned
on monitor-on, and trigger the ones conditioned on light-on
instead, such as an app that unlocks the patio door.

This attack occurs when two events have the same rules,
preventing the R-EVS from distinguishing between those events.

Rule1 : Ei ↔ {Si,1 = High, Si,2 = High, ..., Si,n = High}
Rule2 : Ej ↔ {Sj,1 = High, Sj,2 = High, ..., Sj,m = High}

{Sj,1, Sj,2, ..., Sj,m} = {Si,1, Si,2, ..., Si,n}

ML-EVS are vulnerable to this attack if an event’s model
(Ej) outputs Ej-occurred when another event (Ei) physically
occurs, and Ei’s model outputs Ei-occurred when Ej occurs,
making the events indistinguishable to ML-EVS.
Aggregated Evasion Attacks. We have presented three evasion
attacks for EVS that stem from an event’s physical fingerprint
being similar or opposing to a single event. Yet, in complex
smart homes with diverse sensors and actuators, the aggregated
(joint) influence of multiple events on sensor readings may
also satisfy or conceal an event’s fingerprint and enable an
adversary to conduct evasion attacks. For instance, an event
(Ek) is vulnerable to aggregated Evasion1 (spoofing attack) if
its rule is encapsulated by two or more events (Ei, Ej).
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Rule1 : Ei ↔ {Si,1 = High, Si,2 = High, ..., Si,n = High}
Rule2 : Ej ↔ {Sj,1 = High, Sj,2 = High, ..., Sj,m = High}
Rule3 : Ek ↔ {Sk,1 = High, Sk,2 = High, ..., Sk,l = High}
{Sk,1, Sk,2, ..., Sk,l} ⊆ {Si,1, Si,2, ..., Si,n} ∪ {Sj,1, Sj,2, ..., Sj,m}

In ML-EVS, an event model (Ek) is vulnerable to aggregated
Evasion1 attack if its model predicts event-occurred when
other events (Ei, Ej) physically occur. Similarly, the aggregated
influences from multiple events may enable the adversary to
conduct Evasion2 and Evasion3 attacks.

V. ROBUST PHYSICAL FINGERPRINT GENERATION

We identify the evadable physical fingerprints in EVS and fix
them by patching the EVS software. When the software patching
fails, we identify the sensor locations for robust fingerprint
generation, preventing attackers from evading EVS.

Approach Overview. Our approach to robust physical finger-
print generation is illustrated in Figure 3.

Given the event fingerprints generated by an EVS and col-
lected event and sensor traces, we first discover the fingerprints
that are vulnerable to evasion by checking if a fingerprint can
be satisfied or concealed due to other events’ influences ( 1 ).

We fix evadable event fingerprints with two complementary
methods: EVS software patching and sensor location patching.
Software patching is the process of creating additional finger-
prints that define the relation between multiple events and their
joint influence on sensors ( 2 ). We define these new fingerprints
in the EVS software to prevent Evasion1 and Evasion2 attacks.
Yet, software patching cannot prevent Evasion3 attacks since
they occur when the events’ fingerprints are indistinguishable,
and thus, even the new fingerprints fail to detect this attack.

To address the limitations of software patching, we introduce
sensor location patching, which prevents evasion attacks through
an appropriate sensor placement, ensuring events have a unique
physical fingerprint ( 3 ). For this, we develop a technique that
models actuators with hybrid automata, and extends parameter
mining to derive the angles and distances of sensors from the
actuators to generate robust physical fingerprints.

System Deployment. Software patching is an automated
process that creates new physical fingerprints by analyzing the
existing traces of EVS, and integrates them into EVS software.

Sensor location patching is a security-by-design approach
that complements software patching when unique physical
fingerprints are not found. It requires the actuator locations
in the smart home as an input. We determine the locations
using Lumos [65], an IoT device localization tool, which only
requires the user to walk within the home with a mobile phone
or tablet. Sensor location patching outputs sensor placement
regions that guarantee events have unique physical fingerprints.

Algorithm 1 Discovering Evadable Physical Fingerprints
Input: Event List (Le), Sensor List (Ls), Event Rules (Rulee), Event Models

(fe(X) where X is an event’s feature matrix)
Output: Evadable Fingerprints (Levade)
1: function VULNERABILITYANALYSIS(Le, Ls, Rulee, f(e))
2: for Ei ∈ Le, Ein ⊂ Le do
3: if RuleEi ⊆ Aggr(RuleEin ) then Levade ← Levade ∪ RuleEi
4: end if
5: if fEi (Aggf(XEin )) = 1 then Levade ← Levade ∪ fEi
6: end if
7: if Opp(RuleEi , RuleEin ) then Levade ← Levade ∪ RuleEi
8: end if
9: if fEi (Aggf(XEi , XEin )) = 0 then Levade ← Levade ∪ fEi

10: end if
11: end for
12: return Levade
13: end function

IoT service providers either relocate or add a minimal number
of sensors to the identified regions. To reflect the changes from
these sensors, we revise the EVS fingerprints to prevent the
evasion attacks that software patching could not fix.

Our defenses support added, updated, or removed devices.
If a new device is introduced or an existing device is updated
(e.g., a sensor’s threshold is changed), EVS conduct data
collection with these devices to update the existing fingerprints
and generate new ones. In these cases, our defenses must be re-
used to protect them against evasion. If an actuator is removed,
EVS remove its fingerprint, and if a sensor is removed, EVS
update the fingerprints extracted from that sensor. Here, sensor
removals may create a vulnerability to evasion if that sensor
was distinguishing an event, and thus, our defenses must be
re-used after sensor removals. In practice, our defenses do not
introduce a significant additional effort compared to EVS while
making them secure against evasion.

A. Discovering Evadable Fingerprints

We first discover the fingerprints of EVS that are vulnerable
to evasion attacks, as shown in Algorithm 1.

1) Fingerprint Satisfaction Analysis: We analyze if an
event’s fingerprint is satisfied when other events occur to detect
Evasion1 and Evasion3 vulnerabilities. In R-EVS, we identify
vulnerable rules by checking if other individual or aggregated
event rules are the same or encapsulate an event’s rule (Line
3-4). For this, we define a rule aggregation function (Aggr)
that takes, as input, individual event rules and outputs their
aggregation. If two events influence separate sensors, Aggr
appends their rules. If two events influence the same sensor’s
readings, Aggr sums the numerical ranges of their categories.

In ML-EVS, we identify the vulnerable event models by
checking if the features extracted from other individual events or
their aggregations make the model evaluate to event-occurred
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(Line 5-6). To find the aggregations of the features, we define
an Aggf function that takes as input the features extracted from
each individual event and outputs their aggregation.

2) Fingerprint Concealment Analysis: We analyze whether
an event’s fingerprint is concealed when other events occur
to detect Evasion2 vulnerabilities. In R-EVS, we identify an
event’s rule as vulnerable if another event or multiple events’
aggregation influences a sensor’s readings in opposing ways
(Line 7-8). We define the Opp function, which takes multiple
rules as input and outputs if the first rule is opposing to the
others. In ML-EVS, we identify the vulnerable event models by
checking if the aggregated features of the analyzed event with
other events evaluate to event-not-occurred (Line 9-10). If it
does, this indicates when these events occur and the adversary
masks the analyzed event’s notification, ML-EVS cannot detect
this as its model does not indicate the event has occurred.

B. EVS Software Patching

We craft new fingerprints that make EVS dynamically adapt
the expected sensor measurements based on the other events
that are physically occurring in the smart home.

1) Sensor Data Aggregation: We aggregate the sensor read-
ings collected at EVS data collection to determine the expected
sensor readings when multiple events occur. We leverage these
readings to learn aggregated fingerprints robust against evasion.
One may consider using the computed aggregated rules and
features to learn them. Yet, in R-EVS, we need to adjust the
categories based on events’ aggregated influences. In ML-EVS,
we require training data to learn aggregated event models. To
address this, we define a sensor reading aggregation operator
(Aggs) that computes the joint influence of events on a sensor.

The sensor reading aggregations are often computed with
linear addition [86]. Yet, sound pressure is measured in decibels
that cannot be aggregated with addition. We define Aggs
for sound as Agg = 10× log10(

∑n

i=1 10
Li/10) where Li, i ∈ n

represents the sound pressures [53]. Besides, if a sensor outputs
boolean-typed readings (e.g., sound-detected), we define Aggs
as the “or” operator, which outputs 1 if an event’s influence
on the sensor is 1, and 0 otherwise.

2) Aggregated Fingerprint Generation: We generate new
fingerprints from the aggregated sensor measurements that
define the expected sensor measurements when multiple events
occur. From these, EVS dynamically adjust their fingerprints
based on physically occurring events and avoid evasion.
Generating Aggregated Rules. Run-time rule checks for R-
EVS can be implemented with a set of if statements. A generic
rule (Rule1 : E1 ↔ {S1 = High, S2 = Med}) can be implemented
with the following code block, where the High category for S1
is > 100 and Med category for S2 is [50, 100].

1 m1 = s e n s o r 1 . r e a d ( )
2 m2 = s e n s o r 2 . r e a d ( )
3 i f m1 < 100 or (m2 < 50 or m2 > 100) :
4 p r i n t ( " S p oo f i n g A t t a c k D e t e c t e d " )

This check is performed within a time window (w) after E1
notification is received to detect spoofing. If run-time sensor
readings deviate from the expected values, an attack is detected.

If this rule is vulnerable to evasion as it is encapsulated by
another event’s rule (e.g., Rule2 : E2 ↔ {S1 = High, S2 = Med,

S3 = High}), we generate a new rule that defines their aggrega-
tion. The aggregated rule’s S2 measurement can be determined
as High. For S1, both events’ rules indicate High. Yet, if we
define the aggregated rule’s expected reading as High, this
cannot distinguish between aggregated and individual events.
To address this, we define another category if the aggregated
rule’s category is identical to individual rules but numerically
different. For instance, if E1’s influence on S1 is within [100, 150],
E2’s influence is within [100, 200], and their aggregated influence
is within [200, 350], we define High category as [100, 200] and
Agg_High as > 200. The patched rule for E1 is presented below.

1 m1 = s e n s o r 1 . r e a d ( )
2 m2 = s e n s o r 2 . r e a d ( )
3 m3 = s e n s o r 3 . r e a d ( )
4 i f E2 == 0 and (m1 < 100 or (m2 < 50 or m2 > 100) ) :
5 p r i n t ( " S p oo f i n g A t t a c k D e t e c t e d " )
6 e l i f E2 == 1 and (m1 < 200 or m2 < 100 or m3 < 100)
7 p r i n t ( " S p oo f i n g A t t a c k D e t e c t e d " )

If E2 is not occurring, the rule check does not change (Line
4). If E2 occurs, R-EVS check the aggregated rule (Line 6). If the
adversary spoofs the E1 event when E2 occurs, the patched rule
gets violated at Line 6 as the sensors are only measuring E2’s
influence. Similarly, we leverage the aggregated rules to prevent
Evasion2 attacks. If two events have an opposing influence on
a sensor’s measurements, that sensor is removed from the
aggregated rule to prevent evasion.
Generating Aggregated Models. For vulnerable events, we
derive aggregated models (fE1,...En(x)) using the features from
aggregated sensor readings. Similar to individual models, the
aggregated models have two classes: events-occurred and
events-not-occurred. To detect spoofing, ML-EVS dynami-
cally decide if they should check the individual or aggregated
model based on received notifications. For instance, if E1’s
notification arrives, ML-EVS check fE1(x) = 1. If both E1’s
and E2’s notifications arrive, they check fE1,E2(x) = 1. To detect
masking, ML-EVS periodically check if the aggregated models
output events-occurred but no event notification is received.

3) Limitations of EVS Software Patching: Fingerprint indis-
tinguishability (Evasion3) and certain concealment (Evasion2)
attacks where two or more events completely conceal each
other’s influence cannot be prevented with software patching.
First, if events have indistinguishable fingerprints and the
adversary conducts a mask-and-spoof attack, the software-
patched EVS cannot differentiate which event has occurred,
and cannot detect this attack. Second, if events completely
conceal their influence, the sensor readings change negligibly.
Thus, when the adversary masks their notifications, EVS cannot
detect this. Additionally, software patching cannot be used in
sensors with boolean-typed attributes (e.g., sound-detected) or
if sensor saturation occurs (e.g., humidity sensor reaches 100%).
In such cases, the aggregated influence from multiple events
becomes indistinguishable from the event’s individual influence,
where the sensor outputs a boolean or min/max value.

C. Sensor Location Patching

We introduce sensor location patching to prevent the evasion
attacks that software patching cannot address. We determine the
sensor placement regions that ensure physical fingerprints are
unique for each event. After a minimal number of sensors are
added or relocated to the identified regions, we extract robust
physical fingerprints, which can detect all evasion attacks.
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1) Actuator Automata Construction: We construct hybrid
automata to model an event’s influence on each physical channel.
The automata enable exhaustively and efficiently testing the
events’ influences at different locations to determine the sensor
placements. Although one may consider conducting physical
experiments to determine the sensor placement, multiple tests
with different placements are impractical due to the substantial
effort required. Below, we map each event to the physical
channels they influence and construct an automaton for each.
Mapping Events to Physical Channels. We leverage the
EVS fingerprints to obtain the physical channels that an event
influences, and build an event-physical channel mapping. This
mapping is a binary matrix, Map[p, e], where p is a physical
channel and e is an event. Map[p, e] = 1 means e influences p,
and 0 means it does not. The mapping enables us to construct
an actuator automaton for each physical channel it influences.
Constructing the Automata. Actuator automata model an
event’s influence on a physical channel over time at different
locations. An actuator’s event may influence multiple physical
channels; therefore, we construct an automaton for each event
and channel identified through their mapping. Formally, we
model an actuator as a hybrid automaton [44], H = (Q, X, f, →).
Here, Q is the actuator’s discrete states (e.g., on/off) and X is
a continuous variable that defines the event’s influence on a
channel (e.g., change in temperature). The flow function (f)
takes three parameters, the distance from the actuator, min/max
output values and device property parameter that describes the
actuator characteristics (e.g., its light intensity), and computes
X over time. The flow functions are unique to each physical
channel. For continuous influences (e.g., temperature), they are
defined with differential equations and for instant influences
(e.g., sound), they are defined with algebraic equations.

Overall, we study 12 actuators and three physical channels
commonly used in EVS to construct 18 automata (an event may
impact multiple physical channels) considered in our evaluation.
We detail their implementations in Appendix C. We define
generic flow functions for each physical channel by leveraging
well-studied equations from control theory [42], [56], [74], [86].
We next set the parameters in the flow functions. First, we
set different values to the distance parameter to test different
possible sensor locations (Detailed in Section V-C3). Second,
we set the min/max output parameters based on the highest
and lowest measurements a sensor can output from sensor
datasheets to handle sensor saturation and ensure the automata
do not output values outside these ranges.

To set the device property parameter, we leverage the (τ, ε)-
closeness [1] metric that measures the fidelity of the automata
with actual device traces in their timings (τ ) and values (ε).
We use the data collected for EVS fingerprint generation
to determine the device property parameters that maximize
the (τ, ε)-closeness of our automata with real device traces.
Particularly, we execute the automata with a binary search
on the device property parameter and collect automata traces
that represent an event’s influence on a physical channel. We
then obtain the optimal parameter value that minimizes the
deviation (ε) between automata and real device traces. This
process ensures the constructed automata have high fidelity
with the real devices used in smart homes.

2) Physical Requirements Identification: We observe that to
prevent the evasion attacks, a sensor must be placed in a way

Algorithm 2 Physical Requirements Formalization
Input: Event List (Le), Physical Channel List (Lp), Detection Thresholds (τp),

Event - Physical Channel Mapping (Map[p, e])
Output: LTL Constraint List for each model (Lφp,e )
1: function REQ_MODELING(Le, Lp, τp, Map[p, e])
2: Lφp,e = ∅
3: for j ∈ Lp do
4: N = Sum(Map[i, :])
5: for i ∈ Le do
6: if Map[i, j] == 0 then Break
7: else
8: φi,j = �(imp(〈i, j〉) > τi)
9: φ̄i,j = �(imp(〈i, j〉) < τi/(N− 1))

10: end if
11: Lφp,e = Lφp,e ∪ φi,j ∪ φ̄i,j
12: end for
13: end for
14: return Lφp,e
15: end function

that it measures a single event’s influence. This ensures the
fingerprint extracted from that sensor is unique. Following this,
we formalize the requirements that minimize the number of
events impacting the same sensor’s readings while maximizing
the number of sensors detecting an event’s influence. We
represent the requirements with linear temporal logic (LTL)
to formally reason about them on the automata and derive a
sensor placement that prevents the evasion attacks.

Algorithm 2 details the steps for deriving a list of LTL
formulas. We use these formulas to derive each event’s maximal
and minimal influence regions, which define the locations where
an event’s influence is always detected by a sensor, and never
detected by a sensor, respectively. For each physical channel,
constraint formalization first finds the number of events that
influence the same physical channel (Line 4). It then defines
two LTL formulas for each event (Lines 8-9).

Maximal Influence Formula. The first LTL formula (Line 8)
ensures that an event’s (e) influence on a physical channel (p)
always exceeds a threshold (τ ):

�(imp(〈e, p〉) > τ)

Here, � means always. Since an event’s influence on
sensor readings depends on distance, this formula’s satisfaction
depends on the distance between the sensor and event. The
threshold defines the minimum influence required for an event to
make a change in sensor readings. We determine the thresholds
based on the sensor’s sensitivity level defined in its datasheet.

Minimal Influence Formula. The second formula (Line 9)
allows us to derive the minimal influence regions. For this, we
also consider the aggregated influences from multiple events.
We tailor the formula so that the aggregation of multiple events’
influence does not exceed the sensor threshold.

�(imp(〈e2, p〉) + . . .+ imp(〈eN, p〉) < τ)

Yet, this formula has high complexity since it includes
physical impacts from multiple events. To address this, we
separate the minimal influence formula to individual events by
adjusting the threshold. We leverage the fact that if individual
influences do not exceed τ/(N− 1), where N is the number of
events impacting the same channel (derived in Line 4), their
aggregation cannot exceed τ . Thus, we define the formula as

�(imp(〈ei, p〉) < τ/(N− 1))
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Algorithm 3 Sensor Location Identification
Input: Event List (Le), Physical Channels (Lp), Actuator Locations (Ex,y,z),

LTL Formulas (Lφp,e ), Automata (Hp,e)
Output: Sensor Location Regions (LO)
1: function LOCATIONGENERATION(Le, Lp, Ex,y,z, Lφp,e ,Hp,e)
2: LO = ∅
3: for i ∈ Lp do
4: ct = 0
5: for j ∈ Le do
6: if φi,j 6= ∅ then
7: ri,ct = Parameter_Mining(Hi,j, φi,j)
8: Ci,ct : (x− ix)2 + (y− iy)2 + (z− iz)2 = (ri,ct)2

9: r̄i,ct = Parameter_Mining(Hi,j, φ̄i,j)
10: C̄i,ct : (x− ix)2 + (y− iy)2 + (z− iz)2 = (r̄i,ct)2

11: ct = ct + 1
12: end if
13: end for
14: for j = 0 : ct− 1 do
15: Reg = Ci,j \ {C̄i,j}, k = 0 : ct− 1, k 6= j
16: if Reg = ∅ then
17: for Loc ∈ Ci,j do
18: G = imp(i, j)/(

∑k=ct−1,k 6=j
k=0 (imp(i, k))

19: end for
20: LO = LO ∪ 〈p, G〉
21: else LO = LO ∪ 〈p, Reg〉
22: end if
23: end for
24: end for
25: return LO
26: end function

This guarantees even if N− 1 events’ influences aggregate,
they cannot have a detectable influence on sensors.

3) Sensor Location Identification: We introduce Algo-
rithm 3, which outputs sensor placement regions, given the
actuators’ locations, automata constructed in Section V-C1, and
LTL formulas derived with Algorithm 2. To learn the actuators’
locations, we use Lumos [65], an IoT device localization tool.
Lumos locates devices with high precision using mobile device
sensors and wireless signal strength measurements.

When a sensor is placed in an identified region, the
fingerprint extracted from it ensures that the event has a
unique physical signature. Since we formalize the physical
requirements that ensure each event’s fingerprint is unique
with LTL and conduct formal analysis (parameter mining and
circular grid search) to identify sensor placement regions that
satisfy the LTL formulas, sensor location patching formally
guarantees evasion attacks are prevented under the assumption
of actuator automata correctness.

Robustness-guided Parameter Mining. For each physical
channel and event, we compute the boundary distance from
the event that satisfies the LTL formulas through parameter
mining [45]. Parameter mining conducts a deterministic or
stochastic search to derive a parameter value that incurs
a robustness of ≈ 0 (i.e., “barely” satisfies the formula).
The robustness is the LTL formula’s satisfaction degree on
the automata, where positive robustness values indicate LTL
formula is satisfied, and negative values indicate it is not.

We conduct parameter mining on the distance parameter in
the actuator automata to compute the maximal and minimal
influence regions of each event (Line 7-10). Maximal influence
region is the area where the event’s physical influence is always
detectable by the sensor, and minimal influence region is the

E1

E2

E3

E4
Placement 

Region

(a) Parameter mining output

𝛼

(b) Grid search

Fig. 4: Algorithm 3’s sample output. (a) Four actuators’ events
influence the same physical channel, and a sensor can be placed
in the dark area with E4 as the target event, (b) 2D representation
of the 3D circular grid search.

area it is never detectable. We then consider each event as the
“target event”, which is the event to place a sensor that detects
its physical influence. We take the difference of the target
event’s maximal influence region from the minimal influence
regions of others to find the placement region where the sensor
only measures the target event’s influence (Line 15).

An example output of Algorithm 3 is presented in Figure 4a,
where four actuators’ events E1-E4 impact the same physical
channel and the target event to place the sensor for is E4. We
repeat this for all event-physical channel pairs to maximize the
number of sensors that measure an event’s influences.
Circular Grid Search. Parameter mining finds the sensor
placement regions where only the target event influences the
sensor readings. Yet, there may be cases that a clear region
with no influence from other events do not exist (Line 16)
due to actuator placements and high influences from some
events relative to others. To address this, we conduct a 3D
circular grid search within the target event’s maximal influence
region to find the locations where the target event has the
highest influence compared to others (Lines 17-19). This
ensures the fingerprint extracted from the sensor can distinguish
the target event, preventing the evasion attacks. We conduct
the search as 0° : α° : (360− α)°, 0° : β° : (360− β)° and
s× r : s× r : r, where α and β are angle steps, s is the
distance step, and r is the radius of maximal influence region
(Determined by parameter mining).

Figure 4b depicts a sample grid search within a target
event’s maximal influence region. From each dot in this figure,
the distances to actuators are different, resulting in different
physical influences. For each dot, the search outputs the ratio
of the target event’s impact to the aggregated influence from
other events (Line 18). Higher values of this ratio indicate
the target event’s impact on that location is greater than other
events’ joint influence. Thus, the sensor can be placed in any
convenient location where this ratio is > 1.

4) Robust Physical Fingerprint Generation: There must
be at least one sensor that can distinguish each event from
others to prevent the evasion attacks against EVS. Thus, IoT
service providers need to either install a new sensor or relocate
an existing one for each vulnerable event to the identified
placement regions. The first option allows keeping the existing
sensors’ locations the same and the second is a cost-effective
method that only leverages the existing sensors. Yet, relocating
a sensor may cause another event’s fingerprint to become

8



vulnerable if the sensor distinguishes that event. To prevent
this, we output which sensors can be relocated by checking
if the sensor uniquely distinguishes an event. However, if the
number of sensors in the smart home is low, it may not be
feasible to ensure each event is uniquely detected by a sensor
by only relocating the existing sensors. Here, there is a trade-
off between the number of events protected against evasion
and the number of deployed sensors. Therefore, in such cases,
IoT service providers must install new sensors in the identified
regions to protect all events against evasion attacks.

After the sensor addition/relocation, we update the EVS
fingerprints to prevent evasion attacks. We first remove any
fingerprints extracted from relocated sensors’ readings as
they change based on the new locations. We next revise the
fingerprints to reflect the expected sensor readings for the added
or relocated sensors. Similar to EVS fingerprint extraction, this
requires collecting sensor readings when events occur. This can
be performed by conducting experiments or using the automata
that model each event’s influence on sensor readings. The
first option uses real-world data to learn new fingerprints, yet,
requires additional experiments. The second does not require
experiments but relies on automata correctness.

VI. IMPLEMENTATION

We implement our system’s evadable physical fingerprint
discovery and software patching components in Python. We
use the Pandas library to develop the aggregation functions
for rule, feature and sensor data aggregation. For evadable
fingerprint discovery, we iteratively take each event’s fingerprint
and compare it with each subset of others to check whether
it can be encapsulated or concealed due to their influence.
For software patching, we generate new fingerprints with the
underlying EVS using the aggregated sensor measurements.

We implement sensor location patching within Matlab. We
have constructed 18 automata for 12 actuators that influence
three physical channels using the Simulink toolbox. We use S-
TALIRO [6] to compute the robustness of LTL formulas required
for robustness-guided parameter mining. Lastly, we implement
the circular grid search by executing the automata with different
distances from events (See Appendix B for the details).
EVS Implementations for Evaluation. We have studied six
recent EVS [11], [12], [25], [34], [67], [68] by analyzing their
physical event fingerprint extraction logic and the fingerprints
they infer in their evaluation. We found that these systems are
vulnerable to the evasion attacks introduced in Section IV. This
is because they do not consider the complex physical relations
between events and sensor readings such as indistinguishable
and opposing influences from multiple events.

Among these EVS, we evaluate our system on two of them,
(1) a rule-based approach, HAWatcher [34] and (2) an ML-
based approach, Peeves [11]. We select these approaches for our
evaluation since they outperform prior EVS with comprehensive
physical fingerprints. They are also evaluated on various sensors
and actuators in different smart home settings and shown to
exhibit high accuracy (on average, 74% detection rate for Peeves
and 98% precision with 94% recall for HAWatcher).

For physical event fingerprint extraction, HAWatcher lever-
ages the Jenks algorithm [48] to first classify sensor readings
as ‘high’ or ‘low’. It then conducts hypothesis testing on the
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Fig. 5: Smart home settings in our evaluation: (Left) Studio
apartment setup, (Right) patient care room setup.

correlation between each event and classified sensor readings to
generate rules as event fingerprints. Peeves constructs models
using binary support vector machine (SVM) classifiers with a
linear kernel as event fingerprints. It uses five features (min,
max, mean, sum, and std) from a window of sensor readings.
It leverages relative mutual information (RMI) to measure each
feature’s distinctiveness in distinguishing event-occurred and
event-not-occurred classes. It uses the features above an RMI
threshold (0.4) while learning event models.

We re-implemented these EVS. To verify our implementa-
tions are correct, we conducted data collection in our testbeds
and extracted physical event fingerprints. We observed that
influences on continuous channels (e.g., temperature) take a
longer time to dissipate, making the usage of rules with high/low
categories in HAWatcher infeasible. Thus, for continuous
channels, we define the categories as ‘Increase/Decrease’ and
extract the rules from the changes in sensor readings. We also
found some event models of Peeves cannot be extracted in our
testbeds due to the high RMI threshold (0.4). Thus, we also
report our results when the RMI threshold is 0.2. After these
minor modifications, HAWatcher and Peeves fingerprints detect
all standard (non-evasion) spoofing and masking attacks with
similar accuracy to their reported results (See Section VII-B).

VII. EVALUATION

A. Evaluation Setup

We evaluate our system on two real-world smart home
testbeds. The first is a studio apartment (Figure 5 (Left)), and
the second is a patient care room (Figure 5 (Right)).

In the first testbed, we deployed 7 actuators and 9 sensors
in a studio apartment. The sensors measure three physical
channels (temperature, illuminance, and sound). We selected
these sensor types as they are commonly deployed in smart
homes for automation [20], [27], [56]. Specifically, we use
photoresistor illuminance, BMP183 temperature, and LM393
sound detection sensors connected to Arduinos. The apartment
includes widely deployed actuators such as a smart TV, light
bulb, AC, and portable heater. We use a Raspberry Pi as the edge
device to collect events and sensor readings. In this testbed, an
author spent three days mimicking the events that sporadically
occur during the apartment’s regular use while ensuring each
event occurs at least 10 times. We also triggered events with
different actuator modes (e.g., heater with high/low and AC with
different target temperature values). Thus, events are triggered
in different conditions, and enough data is generated to learn
fingerprints. We note that EVS use signal processing techniques

9



to eliminate the impact of environmental conditions and isolate
the events’ influence on sensor readings. This enables learning
fingerprints from a few days of data [11].

In the second testbed, we deployed 5 actuators and 7 sensors
in a room to convert it to a patient room. Particularly, we
deployed TV, smart light bulb, and temperature regulation
devices (heater and fan) that are used for stress reduction in
hospital rooms [5]. We also installed an alarm for emergencies
and sound, illuminance, and temperature sensors for moni-
toring [73]. Here, we use the same sensors with the studio
apartment besides the sound sensor, which we replace with
a numerical decibel-meter. We use different actuator devices
from the studio except for the portable heater. In this testbed,
two authors spent three days, one performing patient activities
and the other performing visitor activities. Similar to the first
testbed, to have enough coverage for learning event fingerprints,
we ensure each event is triggered at least 10 times and with
different actuator modes (e.g., fan with high/low settings).

In Appendix D, we detail the events in our testbeds and
their influences on sensor readings. We then provide device
parameters (e.g., sensor sensitivity levels) for both testbeds.

We contacted our university’s IRB office and got advised
that IRB approval is not required since our smart home
environments are controlled testbeds, and we do not collect
any sensitive information.

Research Questions. We present our results by focusing on
several research questions:

RQ1 What are the physical event fingerprints that HAWatcher
and Peeves extract?

RQ2 Which fingerprints are vulnerable to evasion attacks?
RQ3 How many attacks does EVS software patching prevent?
RQ4 How many attacks does sensor location patching prevent?
RQ5 How effective circular grid search is in determining the

sensor’s angular position?
RQ6 What is our system’s performance overhead?

We run our evadable fingerprint discovery, software patching
and sensor location patching algorithms on a laptop computer
with a 1.4 GHz 4-core Intel i5 processor and 16 GB RAM.

B. Effectiveness

We first extract the physical event fingerprints in our
testbeds through the physical fingerprint generation methods
of HAWatcher and Peeves (Detailed in Section VI). We then
identify the evadable fingerprints and show how attackers can
evade these EVS. We apply software patching, and show that
it prevents the Evasion1 and Evasion2 attacks. We next apply
sensor location patching and show it prevents all remaining
evasion attacks. We first detail our results with HAWatcher
(Section VII-B1) and then with Peeves (Section VII-B2).

1) Evaluation Results with HAWatcher: HAWatcher extracts
a total of 12 rules as event fingerprints, where nine of them are
vulnerable to at least one evasion attack. Our software patching
prevents the evasion attacks on seven of the nine rules. We
prevent the remaining attacks with location patching, where
relocating two sensors ensures all rules are robust to evasion.

TABLE I: Event rules before patching.

ID Event Rule Evasion
1 2 3

Studio Apartment Setup
Rule1 1 ↔ {a1 = High} 3 7 3

Rule2 2 ↔ {a2 = High, c1 = Dec, c2 = Dec} 7 3 7

Rule3 3 ↔ {a2 = High, a3 = High, b1 = High, b2 = High} 7 7 7

Rule4 4 ↔ {b1 = High, b2 = High} 3 7 7

Rule5 5 ↔ {a1 = High} 3 7 3

Rule6 6 ↔ {b1 = High, b2 = High, b3 = High} 7 7 7
Rule7 7 ↔ {a4 = High, c1 = Inc} 7 3 7

Patient Care Room Setup
Rule8 1 ↔ {a2 = High, a3 = High, b1 = High} 3 7 7

Rule9 2 ↔ {a1 = High, a2 = High, a3 = High} 3 7 7

Rule10 3 ↔ {a1 = High, a2 = High, c1 = Dec} 7 3 7

Rule11 4 ↔ {b1 = High, b2 = High} 7 7 7

Rule12 5 ↔ {a1 = High, c1 = Inc} 7 3 7

3 means attack is successful, 7 means it is unsuccessful.

(RQ1) Physical Event Fingerprints before Patching. Table I
describes the event rules in the studio (Rule1-Rule7) and the
patient room (Rule8-Rule12). For instance, (Rule1) states the a1

sound sensor must measure High when door-unlock occurs.

To test the correctness of the extracted rules, we evaluate
their effectiveness in identifying standard (non-evasion) event
spoofing and masking attacks. Similar to HAWatcher, we
manipulate the event logs to conduct these attacks. We randomly
inject 12 events (one of each event type) to the logs, while a
physical event is not occurring, to conduct spoofing attacks. We
remove one of each event from the logs to conduct masking
attacks. We confirm that HAWatcher’s rules detect all these
attacks without any false positives or negatives.
(RQ2) Evasion Attacks. Our physical fingerprint analysis
shows that 5/7 (71%) of the rules in the studio apartment and
4/5 (80%) of the rules in the patient care room are vulnerable
to at least one evasion attack. Table I shows the vulnerable
fingerprints, and we detail them below.

In the studio apartment, Evasion1 (spoofing) attacks are
successful on 3/7 (43%) of the rules, and Evasion2 (masking)
and Evasion3 (mask-and-spoof) attacks are successful on
2/7 (29%) of them. Evasion1 attacks occur if an event’s
rule is encapsulated by another rule. For instance, Rule1 and
Rule5 are vulnerable to spoofing as both the door-unlock and
toaster-off events only influence the a1 sound sensor’s read-
ings where it outputs sound-detected when any of these events
occur. Similarly, Evasion2 attacks occur due to indistinguishable
rules. Thus, rules extracted from door-unlock and toaster-off
are vulnerable to mask-and-spoof attacks as well. Evasion3
attacks occur due to concealing influences from events. Rule2
and Rule7 are vulnerable to Evasion3 as AC-on and heater-on
influence the c1 temperature sensor in opposing ways.

In the patient room, Evasion1 and Evasion2 attacks are each
successful on 2/5 (40%) of the rules. More events influence the
same sensor’s readings as the physical space is smaller, resulting
in a denser device deployment and causing aggregated evasion
attack vulnerabilities. For instance, Rule9 is encapsulated by the
joint influence from TV-on and fan-on, creating an opportunity
for spoofing alarm-on when these events occur.
(RQ3) Software Patching. Table II describes the aggregated
event rules generated by software patching of HAWatcher. The
aggregated event rules prevent 3/7 (43%) of the evasion attacks
in the studio and 4/4 (100%) of the attacks in the patient room.
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TABLE II: Aggregated event rules after software patching.

ID Aggregated Event Rule Evasion

1 2 3

Studio Apartment Setup
Rule13 1 & 5 ↔ {a1 = High} 3 7 3

Rule14 3 & 4 ↔ {a2 = High, a3 = High, b1 = Agg_High, b2 = Agg_High} 7 7 7

Rule15 4 & 6 ↔ {b1 = Agg_High, b2 = Agg_High, b3 = High} 7 7 7

Rule16 2 & 7 ↔ {a4 = High, c2 = Dec} 7 7 7

Patient Care Room Setup

Rule17
1 & 2 & 4 ↔ {a1 = High, a2 = Agg_High,

7 7 7
a3 = Agg_High, b1 = Agg_High, b2 = High}

Rule18
1 & 2 & 3 ↔ {a1 = Agg_High, a2 = Agg_High,

7 7 7
a3 = Agg_High, b1 = High, c1 = Dec}

Rule19
1 & 2 & 5 ↔ {a1 = Agg_High, a2 = Agg_High,

7 7 7
a3 = Agg_High, b1 = High, c1 = Inc}

Rule20 3 & 5 ↔ {a1 = Agg_High, a2 = High} 7 7 7

The aggregated rules prevent the evasion attacks by dy-
namically adjusting the expected sensor readings based on
the other events that occur. For instance, an aggregated rule
in the patient room defines the aggregated influence from
alarm-on, TV-on and fan-on (Rule18). It prevents the Evasion1
attack against the alarm because when TV-on and fan-on occur
and the adversary spoofs alarm-on, HAWatcher checks Rule18.
Since the influence from TV-on and fan-on cannot satisfy Rule18,
HAWatcher detects this attack (Detailed in Section VII-C).

Software patching cannot prevent four evasion attacks
against Rule1 and Rule5. These rules only rely on a single
sensor (a1) that outputs boolean-typed readings, preventing the
aggregated rules from distinguishing these events.
(RQ4) Sensor Location Patching. We prevent the four evasion
attacks in the studio that software patching could not prevent
by relocating a1 and a2 sound sensors, as depicted in Figure 6
(Left). When a1 sensor is relocated, it only measures the door
lock’s influence as its distance with the toaster is increased,
preventing the evasion attacks against door-unlock.

After this relocation, none of the sensors measure the toaster
events, and therefore, sensor location patching outputs a2 as
a candidate to be relocated to measure its influence. Here,
a2 sensor is selected since all other sound sensors uniquely
fingerprint another event, but a2 does not. After relocating a2,
we update its rule as 5 ↔ a2 = High, and remove a2 from other
rules because the actuator automata indicate the sound sensor
cannot measure other events’ influences in its new location.
After relocating the sensors, we re-conducted data collection and
confirmed the rules learned from automata outputs are correct,
preventing the evasion attacks. Similarly, adding sensors to the
identified locations prevents the evasion attacks.

2) Evaluation Results with Peeves: Peeves extracts a total
of 12 models as event fingerprints, where eight of them are
vulnerable to at least one evasion attack. Our software patching
prevents the evasion attacks on 4/8 (50%) of the models.
Sensor location patching prevents the remaining attacks, where
relocating four sensors ensures all models are robust.
(RQ1) Physical Event Fingerprints before Patching. We
extract seven event models for the studio and five models for
the patient room, with different SVM kernels (linear and RBF)
and parameters (RMI threshold and window size). We observe
some models cannot be extracted when the RMI threshold
is 0.4, but all are extracted when it is 0.2. This is because
when multiple events influence the same sensor’s readings, the
distinctiveness of the features extracted from them decreases.
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Fig. 6: Sensor placement after location patching in the (Left)
studio apartment, (Right) patient care room. The dashed lines
show how the sensors are moved from their initial placement.

To test the event models’ accuracy, we conduct five-fold
cross validation on our collected data. Table III presents the
accuracy of event models with different sets of parameters. We
observe all models yield high accuracy (> 0.73) and most have
perfect accuracy. The accuracies of our models are similar to
the results in [11], where the average detection rate is 0.74.

(RQ2) Evasion Attacks. When the RMI threshold is set as 0.2,
our physical fingerprint analysis indicates that 4/7 (57%) of
the models in the studio and 4/5 (80%) of them in the patient
room are vulnerable to at least one evasion attack.

In the studio apartment, Evasion1 (spoofing) and Evasion3
(mask-and-spoof) attacks are successful on door-unlock and
toaster-off, and Evasion2 (masking) attacks are successful
on AC-on and heater-on. Compared to HAWatcher, Peeves can
successfully detect evasion attempts against monitor-on since
numerical features enable distinguishing this event. We also
noticed some models prevent spoofing and mask-and-spoof
attacks against door-unlock and toaster-off. Upon further
examination, we found their similar influence on a1 sound
sensor readings still disrupts the models, causing false positives
(physically occurred event’s notification is flagged as an attack).

In the patient room, we observe the same evasion attacks
against HAWatcher are applicable to Peeves. This is because
when multiple events occur, they influence sensor readings sim-
ilarly with another event’s influence, causing misclassifications.
For instance, an adversary can spoof the TV-on event when
fan-on and alarm-on occur as these events influence a2 sound
and b1 illuminance sensors at similar levels with TV-on.

(RQ3) Software Patching. The software-patched event models
detect 2/6 (33%) of the evasion attacks in the studio and
2/4 (50%) of the evasion attacks in the patient room.

In the studio apartment, we derive a model for door-unlock
and toaster-off, and another for AC-on and heater-on. The
first model cannot prevent the evasion attacks since the sound
sensor that detects the door-unlock and toaster-off events
output boolean-typed readings. The second model prevents the
Evasion2 attacks against AC-on and heater-on as their aggre-
gated influence has a unique fingerprint on sensor readings.

In the patient room, we derive a joint model for fan-on and
heater-on, which successfully prevents the Evasion2 attacks.
We derive three separate models to prevent the Evasion1 attacks
against TV-on and alarm-on. This is because their event models
can be evaded when different combinations of other events
physically occur. However, we notice that the new event models
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TABLE III: Average accuracy of event models with five-fold cross validation and their vulnerability to evasion.

Studio Apartment Setup Patient Care Room Setup
Event Model Parameters Average Accuracy Vulnerable Models Average Accuracy Vulnerable Models

Kernel RMI Threshold Window Size 1 2 3 4 5 6 7 Evasion1 Evasion2 Evasion3 1 2 3 4 5 Evasion1 Evasion2 Evasion3

Linear

0.2
5sec/1min 0.77 0.8 1 0.88 0.74 1 1 1 , 5 2 1 , 5 0.78 0.78 0.87 0.86 0.73 1 , 2 , 3 5 7

10sec/3min 0.77 1 0.89 0.88 0.76 1 1 1 , 5 7 1 , 5 0.78 0.78 1 0.86 1 1 , 2 3 , 5 7

15sec/5min 0.77 1 0.89 0.88 0.74 1 1 1 , 5 7 1 , 5 0.78 0.78 1 0.86 1 1 , 2 3 , 5 7

0.4
5sec/1min 0.74 − 1 − − − 1 1 7 7 − − − 0.86 − 7 7 7

10sec/3min − 1 1 − − 0.86 1 7 7 7 − − − 0.86 1 7 5 7

15sec/5min − 1 1 − − − 1 7 7 7 − 0.8 1 0.86 1 2 3 , 5 7

RBF

0.2
5sec/1min 0.74 1 1 1 0.74 1 1 1 2 7 1 1 0.94 1 0.73 1 , 2 , 3 5 7

10sec/3min 0.77 1 1 1 0.74 1 1 1 , 5 7 1 , 5 1 1 1 1 1 1 , 2 3 , 5 7

15sec/5min 0.74 1 1 1 0.74 1 1 5 2 , 7 7 1 1 1 0.86 1 1 , 2 3 , 5 7

0.4
5sec/1min − − 1 − − − 1 7 7 7 − − − 1 − 7 7 7

10sec/3min − 1 1 − − − 1 7 7 7 − − − 1 0.88 7 5 7

15sec/5min 0.74 − 0.99 − − − 0.86 7 7 7 − − 0.89 1 0.88 7 3 , 5 7

(−) indicates that event model could not be derived because none of the features were distinctive based on the RMI threshold.

are also vulnerable to evasion since they cannot distinguish
which subset of events has occurred. For instance, we derive
a model for TV-on, alarm-on and fan-on events, but it outputs
events-occurred when TV-on, alarm-on and light-on occur.
This would allow an adversary to spoof alarm-on when the
other events occur. Thus, we prevent the Evasion1 attacks
against TV-on and alarm-on with sensor location patching.

(RQ4) Sensor Location Patching. We prevent four evasion
attacks in the studio by relocating two sensors and two evasion
attacks in the patient care room by relocating two sensors.

In the studio, we relocate the a1 and a2 sound sensors
as depicted in Figure 6 (Left). This enables deriving unique
models for door-unlock and toaster-off events, preventing
the Evasion1 and Evasion3 attacks. We confirm the new models
are not vulnerable to evasion by conducting physical fingerprint
analysis again with the new models.

In the patient room, we relocate the b1 illuminance and
a3 sound sensors as shown in Figure 6 (Right). After the
relocations, the features extracted from b1 enables fingerprinting
the TV-on event and features from a3 distinguishes the alarm-on
event. Thus, the event models learned after the sensor location
patching are not vulnerable to evasion. We confirmed this by
first learning new event models using the traces generated from
automata outputs. We next conducted data collection with the
new sensor placement and tested if event models are vulnerable
to evasion. Our experiments confirmed the new event models
are not vulnerable to evasion (Detailed in Section VII-C).

C. Case Studies

We detail two evasion attacks, one against HAWatcher and
another against Peeves, and then show how they are mitigated
after software and sensor location patching. We also provide a
case study to evaluate the effectiveness of circular grid search,
which shows putting the sensors merely close to the actuators
may not be enough to prevent the evasion attacks.

Case Study 1. We detail the spoofing attack against alarm-on
(Rule9) in the patient room. Rule9 indicates alarm-on influences
three sound sensors as {a1 = High, a2 = High, a3 = High}. Yet,
when fan-on and TV-on physically occur, these three sensors
measure the expected High readings. For instance, Figure 7a de-
picts a1’s readings before software patching. Fan-on’s influence
satisfies Rule9’s expected readings for a1. If the adversary
spoofs the alarm-on event when fan-on and TV-on events
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Fig. 7: a1 sound sensor measurements in the patient care room.
(a) The adversary can evade EVS by spoofing alarm-on when
fan-on occurs. (b) Software patching prevents the attack.

occur, HAWatcher cannot detect this. Through this attack, the
adversary can cause unnecessary panic at the patient room.

After software patching, we define a new rule (Rule18)
from the aggregated influences from alarm-on, fan-on and
TV-on. Rule18 defines that when these three events occur to-
gether, the expected sensor measurements are {a1 = Agg_High,
a2 = Agg_High, a3 = Agg_High, b1 = High, c1 = Dec}. If the
adversary spoofs the alarm-on event when others occur,
HAWatcher detects this as Rule18 gets violated. For instance,
Figure 7b shows a1 readings after software patching with the
new rule. Particularly, Rule18 checks the aggregated influence
from alarm-on event and fan-on when it receives their notifi-
cation instead of checking their rules individually. Therefore,
it detects the alarm-on spoofing attack as the influence level
from fan-on is lower than the expected measurement.

Case Study 2. We detail the spoofing attack against Peeves’s
TV-on model in the patient room. Figure 8 illustrates the features
extracted from a1 sound and b1 illuminance sensor readings
before and after sensor location patching. Before patching, the
features cannot distinguish the TV-on event’s influence from
the joint influence from alarm-on and light-on events. This is
because the TV-on and alarm-on events influence the a1 sound
sensor measurements, and TV-on and light-on influence b1

illuminance sensor measurements at similar levels.

After sensor location patching all features are able to
distinguish TV-on from other events. For instance, the features
extracted from the b1 illuminance sensor (right two columns
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Fig. 8: Features (min, max) from a3 sound and b1 illuminance
sensor measurements before and after sensor location patching.

for each feature) can fingerprint TV-on. This is because, with
sensor relocation, b1’s distance to the TV stays similar, but its
distance to the light bulb increases. This decreases the light-on
event’s influence on the sensor’s measurements.

Case Study 3 (RQ5: Circular Grid Search Effectiveness).
One may put the sensors close to actuators to address the
evasion attacks. Yet, besides distance, the angle where the
sensor is located is also critical as it impacts the sensor’s
distance to other actuators. We conduct an additional experiment
to show the importance of the sensor’s angle to the actuator.
For this, we place the a1 sound sensor on an angle that is
not suggested by the circular grid search algorithm. Figure 9
illustrates the door-unlock event’s rule (Rule1) and sound sensor
measurements when toaster-on occurs with the correct sensor
location (α = 90, β = 180) and an incorrect sensor location
(α = 270, β = 180) where the distances to the door lock are
the same. Although Rule1 does not change, toaster-off
event does not influence the sound sensor with the correct
location, while it creates an indistinguishable influence with
the door-unlock event with the incorrect location. The incorrect
location makes the rule evadable, enabling the adversary to
conduct a door-unlock spoofing attack. Through this, the
adversary can trigger the IoT apps conditioned on door-unlock,
such as causing the studio apartment to enter the “home mode”
and opening the patio door [11], [20].

D. (RQ6) Performance Evaluation

Parameter Mining. The time required for parameter mining
depends on the automata. Instant influences are modeled with
algebraic equations, and continuous influences are modeled with
differential equations and take more time. Mining sound and
illuminance distances take 1.51± 0.32 secs. For temperature,
parameter mining takes 8.40± 3.33 secs. Parameter mining
is repeated twice for each physical channel and the actuators
impacting that channel. Thus, its total cost is 36.77 secs for
the studio apartment and 35.96 secs for the patient room.

Circular Grid Search. Circular grid search is conducted with
angle and distance step parameters for sensor placement. With
different parameter selections, the efficiency of grid search
changes linearly. We select these parameters to be α = 45,
β = 45 and s = 0.1. Circular grid search takes 220.71± 53.01
secs for sound and illuminance, and 751.26± 139.42 secs
for temperature. This search is repeated for any physical
channel–event pair if parameter mining cannot determine a
clear placement region. In our experiments, seven pairs require
circular grid search, with a total cost of 44 mins.
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Fig. 9: a1 sound sensor measurements in the studio apartment
when it is placed at the same distance to the door lock but at
different angles (α = 90, β = 180 vs α = 270, β = 180).

VIII. LIMITATIONS AND DISCUSSION

Deploying Our Defenses in Different Smart Homes. EVS
may require generating new event fingerprints in other smart
homes since the types, locations, and vendors of devices may
differ from each other. Thus, after EVS generate fingerprints
in a smart home, our defenses are then used to detect evadable
fingerprints and protect them against evasion attacks.

Our evadable fingerprint identification and software patching
are automated processes that create new fingerprints using
existing data collected for EVS fingerprint generation. Sensor
location patching constructs automata to model an event’s
physical influence(s). We define generic flow functions that
can be used in other smart homes for the studied physical
channels, as we detail in Appendix C, but there could be
sensors measuring different channels. In such cases, a new flow
function can be either (1) provided by device manufacturers or
(2) defined from control theory [42], [56], [74].

Our defenses then require executing the automata with three
parameters specific to each smart home’s devices for parameter
mining and circular grid search. First, to set the distance
parameter, we use the Lumos localization tool [65], which
requires a user to walk inside the smart home with their mobile
phone or tablet. Lumos accurately identifies device locations in
30 mins, consisting of 27 mins of wireless sniffing followed by
three mins of walking. Second, the min/max output parameters
are set based on the highest and lowest possible readings of the
installed sensors. Lastly, as detailed in Section V-C, the device
property parameter is automatically determined using existing
EVS event and sensor measurement traces. Sensor location
patching then outputs placement regions, where IoT service
providers must relocate or add a minimal number of sensors.
Concept Drift. The relationship between events and sensor
readings may dynamically change over time (e.g., due to
environmental noise and seasonal changes), creating a concept
drift [35] in event fingerprints. This could cause false negatives
(missed attacks) and false positives (falsely flagged attacks) in
EVS over time. To address this, EVS conduct differencing to
remove the impact of other factors on sensors and isolate the
events’ influences. Yet, in rare cases, concept drift may occur in
EVS (e.g., due to device aging [60]). To handle them, EVS can
integrate sophisticated concept drift detection mechanisms [80].
Fully Overlapped Events. There may be rare cases where
actuators are placed very closely, and an event’s influence on
a sensor’s measurements is always lower than other events. In
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these cases, location patching may not identify a placement
region for that event-sensor pair. Thus, such events must be
distinguished through sensors with other modalities.
Number of Detected Events. To prevent evasion attacks,
sensor location patching ensures at least one sensor can uniquely
distinguish an event’s influence by minimizing the influences
from other events on the sensor’s measurements. This may
result in a sensor being able to detect a single event, yet, a
user may desire their sensor to measure multiple events. To
ensure a sensor detects the maximum number of events while
preventing evasion attacks, IoT service providers can prefer
the sensor placement regions where multiple events’ influences
overlap, yet, the target event’s influence is the highest.
Immovable Sensors. In smart homes, there could be sensors
attached to a specific actuator (e.g., door or window contact
sensors), which are infeasible to move to other locations. Using
our location patching for these sensors is not practical. However,
these sensors can already distinguish the events of the actuator
they are attached to, and therefore, they can prevent evasion
attacks against these events’ fingerprints.

IX. RELATED WORK

Event Verification Systems. There has been an increasing
number of works in EVS, and more broadly anomaly detection
in smart homes [11], [12], [34], [67], [68], [81]. These systems
learn physical fingerprints of events on sensor measurements
offline. They then detect attacks if the sensor readings deviate
from the learned physical behavior of an event at runtime.
Unfortunately, as we have shown in Section VI, these efforts
have not considered the complex physical properties that enable
evasion attacks in their design, which motivates our approach.
Our system is complementary to these EVS, where we introduce
EVS software patching and sensor location patching to make
them robust against identified evasion attacks.
Physics-based Attack Detection (PBAD). Cyber-Physical Sys-
tems (CPS) are broadly vulnerable to three types of attacks [37].
First, an adversary can conduct control command attacks,
which cause actuators to execute commands different from
the controller’s intended action, by compromising actuators
or injecting malicious commands. Second, an adversary can
inject false sensor readings to deceive the controller about the
real state of the CPS. Lastly, an adversary can compromise the
CPS controller to issue malicious commands. Event spoofing
and masking attacks in smart homes are a subset of the
control command attacks in CPS, where an adversary causes
discrepancies between the cyber and physical actuator states.

To detect these attacks, PBAD has received attention from
both security and control theory communities [37] in various
CPS domains such as control systems [36], [41], [51], [52],
[72], water distribution systems [7], [32], chemical plants [16],
[54], and autonomous vehicles [24], [26], [59], [66]. These
systems learn the time-series model of a CPS that predicts
future sensor readings from current sensor readings and control
commands using subspace model identification. They then
compute residuals, which are the deviations of the real sensor
readings from the predicted readings. They detect an attack
if the residual exceeds a threshold at any single time or the
cumulative sum of the historical residuals exceeds a threshold.

The main difference between EVS and PBAD systems is
how they generate fingerprints or physical models for attack

detection. PBAD systems leverage state-space models to model
the closed-loop control of CPS. This is because CPS includes a
sophisticated closed-loop control that continuously determines
actuator signals based on sensor readings. For instance, robotic
vehicles continuously issue torque and thrust values to rotors
to keep the roll, pitch, and yaw angles at target values [59]. In
contrast, EVS fingerprints simply define each event’s influence
directly on the sensor readings. Although certain smart home
actuators may have a closed-loop control (e.g., heater and
AC), users can also turn on these devices manually and using
smartphone companion apps. For example, an IoT app may
automatically turn on a heater when the temperature is 65°F but
the user may also manually turn it on when it is 70°F. Thus, it
is impractical to use PBAD state-space models in smart homes
due to the unpredictable nature of smart home events.

There have also been stealthy attacks proposed against
CPS, which create small deviations in sensor and actuator
signals over time to cause maximum damage without being
detected by PBAD systems [59], [72]. Such stealthy attacks are
similar to our attacks since they also evade defense mechanisms.
However, unlike our evasion attacks, stealthy attacks inject
slight deviations indistinguishable from the natural perturbations
of a CPS to evade PBAD. In this paper, we focus on the
evasion attacks against EVS due to the events’ encapsulating,
concealing, and indistinguishable influences on sensor readings
and propose two complementary defenses against these attacks.

Evasion Attacks. Evasion attacks bypass security defense
mechanisms to exploit vulnerabilities in a target system without
detection. Previous works have demonstrated evasion attacks
against security applications (oftentimes built on ML and
DNN models), such as intrusion detection [33], [43], malware
detection [10], [69], [79] and autonomous systems [15], [23],
[46], [57]. A line of work has explored evasion attacks against
anomaly detection systems for CPS, e.g., water treatment
plants [30], and water distribution systems [29], [50].

These works induce model behavior by perturbing inputs
of systems (e.g., spoofing sensor values, injecting commands,
perturbing malware packets, and binaries) digitally or physically
to control the model output chosen by the adversary. In contrast,
we target a separate class of evasion attacks on EVS fingerprints
by exploiting complex physical relations between events and
sensor readings in smart homes. We also propose two defenses
to make smart homes robust against these attacks.

Sensor Placement. Prior works have studied sensor placement
to detect air contamination in buildings [28], and to optimize
energy usage in hospitals [55], offices [82], data centers [76],
and smart parking [9]. Others have studied sensor placement
for energy harvesting [14], battery efficiency in wireless
sensor networks [21], [47], CPS monitoring [49], and fault
detection [62], [78]. These works find a sensor placement for
a specific objective; thus, they cannot be extended for EVS,
which require a different analysis on the events’ influences on
sensor readings based on their fingerprints. To the best of our
knowledge, we introduce the first work that formalizes sensor
placement to prevent evasion attacks against EVS.

X. CONCLUSION

In this paper, we show that EVS are vulnerable to evasion
attacks in which the attacker leverages the complex physical
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properties between events and sensors to conduct event spoofing
and masking attacks without getting detected. To address this,
we propose software and sensor location patching as a defense
against the evasion attacks on EVS. The evaluation of our
prototype on one rule-based and one ML-based EVS deployed
in two smart home settings shows that our system can effectively
detect and prevent the evasion attacks.
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[35] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A
survey on concept drift adaptation,” ACM Computing Surveys (CSUR),
2014.

[36] J. Giraldo, S. H. Kafash, J. Ruths, and A. A. Cardenas, “Daria: Designing
actuators to resist arbitrary attacks against cyber-physical systems,” in
IEEE European Symposium on Security and Privacy (Euro S&P), 2020.

[37] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), 2018.

[38] F. Goksel, M. O. Ozmen, M. Reeves, B. Shivakumar, and Z. B. Celik,
“On the safety implications of misordered events and commands in IoT
systems,” in IEEE Security and Privacy Workshops (SPW), 2021.

15



[39] “Grid dynamics - anomaly detection platform for IoT,”
https://www.griddynamics.com/solutions/anomaly-detection-industry-4-
0, 2020, [Online; accessed 15-Apr-2022].

[40] T. Gu, Z. Fang, A. Abhishek, H. Fu, P. Hu, and P. Mohapatra, “IoTgaze:
IoT security enforcement via wireless context analysis,” in IEEE
Conference on Computer Communications, 2020.

[41] D. Hadvziosmanovic, R. Sommer, E. Zambon, and P. H. Hartel, “Through
the eye of the PLC: semantic security monitoring for industrial processes,”
in Annual Computer Security Applications Conference (ACSAC), 2014.

[42] M. J. Hancock, “The 1-d heat equation,” MIT OpenCourseWare., 2006.
[43] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detection:

Evasion, traffic normalization, and End-to-End protocol semantics,” in
USENIX Security, 2001.

[44] T. A. Henzinger, “The theory of hybrid automata,” in Verification of
digital and hybrid systems. Springer, 2000.

[45] B. Hoxha, A. Dokhanchi, and G. Fainekos, “Mining parametric temporal
logic properties in model-based design for cyber-physical systems,”
International Journal on Software Tools for Technology Transfer, 2018.

[46] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in ACM Workshop on Security and
Artificial Intelligence, 2011.

[47] E. Jain and Q. Liang, “Sensor placement and lifetime of wireless
sensor networks: theory and performance analysis,” in IEEE Global
Telecommunications Conference (GLOBECOM), 2005.

[48] G. F. Jenks, “The data model concept in statistical mapping,” Interna-
tional yearbook of cartography, 1967.

[49] J.-A. Jiang, J.-C. Wang, H.-S. Wu, C.-H. Lee, C.-Y. Chou, L.-C. Wu,
and Y.-C. Yang, “A novel sensor placement strategy for an IoT-based
power grid monitoring system,” IEEE Internet of Things Journal, 2020.

[50] M. Kravchik and A. Shabtai, “Efficient cyber attack detection in industrial
control systems using lightweight neural networks and pca,” IEEE
Transactions on Dependable and Secure Computing, 2021.

[51] M. Krotofil, J. Larsen, and D. Gollmann, “The process matters: Ensuring
data veracity in cyber-physical systems,” in ACM Symposium on
Information, Computer and Communications Security, 2015.

[52] R. Lanotte, M. Merro, A. Munteanu, and L. Viganò, “A formal approach
to physics-based attacks in cyber-physical systems,” ACM Transactions
on Privacy and Security (TOPS), 2020.

[53] F. Mitschke, “Decibel units,” in Fiber Optics, 2009.
[54] Y. Mo, R. Chabukswar, and B. Sinopoli, “Detecting integrity attacks

on scada systems,” IEEE Transactions on Control Systems Technology,
2013.

[55] E. Mousavi, A. Khademi, and K. Taaffe, “Optimal sensor placement in
a hospital operating room,” IISE Transactions on Healthcare Systems
Engineering, 2020.

[56] M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and X. Zhang,
“Discovering IoT physical channel vulnerabilities,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2022.

[57] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Asia Conference on Computer and Communications Security, 2017.

[58] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys & Tutorials, 2013.

[59] R. Quinonez, J. Giraldo, L. Salazar, and E. Bauman, “Savior: Securing
autonomous vehicles with robust physical invariants,” in USENIX
Security, 2020.

[60] P. Refregier, Noise theory and application to physics: from fluctuations
to information. Springer Science & Business Media, 2004.

[61] A. Salazar, “On thermal diffusivity,” European Journal of Physics, 2003.
[62] R. Sarrate, V. Puig, T. Escobet, and A. Rosich, “Optimal sensor placement

for model-based fault detection and isolation,” in IEEE Conference on
Decision and Control, 2007.

[63] “Shield IoT - secure your mass scale IoT networks,” https://shieldiot.io,
2020, [Online; accessed 15-Apr-2022].

[64] O. B. Sezer, E. Dogdu, and A. M. Ozbayoglu, “Context-aware computing,
learning, and big data in internet of things: a survey,” IEEE Internet of
Things Journal, 2017.

[65] R. A. Sharma, E. Soltanaghaei, A. Rowe, and V. Sekar, “Lumos:
Identifying and localizing diverse hidden IoT devices in an unfamiliar
environment,” in USENIX Security, 2022.

[66] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, “Pycra:
Physical challenge-response authentication for active sensors under
spoofing attacks,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2015.

[67] A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: a context-
aware security framework for smart home systems,” in Annual Computer
Security Applications Conference (ACSAC), 2019.

[68] A. K. Sikder, L. Babun, and A. S. Uluagac, “Aegis+ a context-aware
platform-independent security framework for smart home systems,”
Digital Threats: Research and Practice, 2021.

[69] N. Srndic and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in IEEE Symposium on Security and Privacy (S&P), 2014.

[70] “Technaura,” https://www.technaura.com/anomaly-detection, 2020, [On-
line; accessed 15-Apr-2022].

[71] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky, “Packet-
level signatures for smart home devices,” in NDSS, 2020.

[72] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Valente,
M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting the impact
of stealthy attacks on industrial control systems,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2016.

[73] L. P. Voigt, K. Reynolds, M. Mehryar, W. S. Chan, N. Kostelecky, S. M.
Pastores, and N. A. Halpern, “Monitoring sound and light continuously
in an intensive care unit patient room: A pilot study,” Journal of Critical
Care, 2017.

[74] N. Voudoukis and S. Oikonomidis, “Inverse square law for light and
radiation: A unifying educational approach,” European Journal of
Engineering Research and Science, 2017.

[75] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and logging in
the internet of things,” in NDSS, 2018.

[76] X. Wang, X. Wang, G. Xing, J. Chen, C.-X. Lin, and Y. Chen, “Towards
optimal sensor placement for hot server detection in data centers,”
in IEEE International Conference on Distributed Computing Systems
(ICDCS), 2011.

[77] E. Winer, The audio expert: everything you need to know about audio.
CRC Press, 2012.

[78] K. Worden and A. Burrows, “Optimal sensor placement for fault
detection,” Engineering Structures, 2001.

[79] W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers,” in
NDSS, 2016.

[80] L. Yang, W. Guo, Q. Hao, A. Ciptadi, A. Ahmadzadeh, X. Xing, and
G. Wang, “CADE: Detecting and explaining concept drift samples for
security applications,” in USENIX Security, 2021.

[81] R. Yasaei, F. Hernandez, and M. A. Al Faruque, “IoT-CAD: context-
aware adaptive anomaly detection in IoT systems through sensor
association,” in IEEE/ACM International Conference On Computer Aided
Design (ICCAD), 2020.

[82] D. Yoganathan, S. Kondepudi, B. Kalluri, and S. Manthapuri, “Optimal
sensor placement strategy for office buildings using clustering algorithms,”
Energy and Buildings, 2018.

[83] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, and Y. Zhang, “Shattered
chain of trust: Understanding security risks in cross-cloud IoT access
delegation,” in USENIX Security, 2020.

[84] B. Yuan, Y. Wu, M. Yang, L. Xing, X. Wang, D. Zou, and H. Jin,
“Smartpatch: Verifying the authenticity of the trigger-event in the IoT
platform,” IEEE Transactions on Dependable and Secure Computing,
2022.

[85] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu, “Homonit:
Monitoring smart home apps from encrypted traffic,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2018.

[86] A. Zhivov, H. Skistad, E. Mundt, V. Posokhin, M. Ratcliff, E. Shilkrot,
and A. Strongin, “Principles of air and contaminant movement inside
and around buildings,” in Industrial ventilation design guidebook, 2001.

[87] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang,
“Discovering and understanding the security hazards in the interactions
between IoT devices, mobile apps, and clouds on smart home platforms,”
in USENIX Security, 2019.

16



APPENDIX A
APPENDIX GUIDE

In this appendix, we provide the information necessary to
reproduce our results. Appendix B presents the implementation
details of our sensor location patching. Appendix C presents
the equations used for actuator automata. Appendix D presents
the sensor and automata parameters.

APPENDIX B
IMPLEMENTATION DETAILS

Automata Construction. To implement our sensor location
patching, we have constructed 18 automata for 12 actuators
that influence three physical channels (temperature, illuminance
and sound) to evaluate our system (See Figure 5). The sensors’
modalities include both instant (illuminance and sound) and
continuous (temperature) channels to show the effectiveness of
our system for both types. We deploy sensors with boolean-
typed attributes (e.g., sound-detected) and numerical readings
(e.g., sound = 60 dB). We constructed the automata and deter-
mined their parameters for all physical channels each event
influences (Detailed in Appendix C and Appendix D).

Parameter Mining and Circular Grid Search. We implement
the sensor location patching within the Matlab environment,
since it enables executing the constructed automata with specific
parameters and collecting data traces. We extend the S-TALIRO

toolbox [6] to implement parameter mining. Particularly, we
use DP-TALIRO, a dynamic programming-based algorithm, to
compute the robustness of LTL formulas. The robustness of
our LTL formulas monotonically changes with the changes in
distance from the actuators. Thus, we construct a binary search-
based algorithm that integrates DP-TALIRO as a subroutine
to conduct robustness-guided parameter mining. Lastly, we
implement the circular grid search by executing the automata
with different distances from actuators determined by three
search parameters. We set α = β = 45 and s = 0.1 so that a
fine-grained search is performed with reasonable performance.

Peeves Implementation. Peeves uses five features, min, max,
mean, sum and standard deviation, from a window of sensor
measurements. To account for environmental noise, Peeves
divides the sensor measurements into windows and subtracts
the previous window’s sensor value average from the current
window’s sensor measurements to isolate an event’s influence
on sensors. We set the time window as 5, 10, 15 secs for
instant physical channels and 1, 3, 5 mins for continuous
physical channels as it takes more time for events to influence
sensor measurements. Peeves then leverages relative mutual
information (RMI) to measure the distinctiveness of each
feature in identifying whether an event occurred or not. If
a feature’s RMI is above a threshold (th), Peeves uses the
feature in learning an event model. We set the RMI threshold
as 0.2 and 0.4 to limit the noisy features while ensuring
enough features can be extracted to learn event models. Peeves
constructs event models as binary linear support vector machine
(SVM) classifiers for each event. We also implement an SVM
classifier with a radial basis function (RBF) kernel to compare
its vulnerability to evasion with the linear kernel.

APPENDIX C
ACTUATOR AUTOMATA FLOW FUNCTIONS

We leverage the physical channels studied in control theory
to determine the flow functions of the automata [42], [56],
[74], [86]. The flow functions mathematically quantify how the
physical channels (temperature, illuminance and sound) diffuse
over air to reach different distances for the sensors to measure.
Here, we present the equations used in our actuator automata.
We note that more sophisticated flow functions that consider
complex physical properties such as light and sound reflections
can be easily integrated to our automata.

Temperature. Temperature is modeled with the heat diffusion
equation [42], which is a partial differential equation that
captures how heat dissipates through air from a point source.

∂T

∂t
= α

∂2T

∂x2
(1)

T(e, 0) = T0 (2)

T(0, 0) = Ts (3)

In the equation, T is temperature in °K , x is the distance
from the heat source in meters, α is the thermal diffusivity
constant (in m2/s), e is the maximum distance from the source,
and Ts is the temperature of the source. We set the thermal
diffusivity as 2.2 · 10−5 m2/s as a constant [61].

We also consider the airflow from fan, heater and AC that
fastens the dissipation rate of the heat. Therefore, we multiply
the thermal diffusivity (α) with a constant c. We set c = 100
for the airflow from all three actuators.

Illuminance. Illuminance dissipates instantly over the air (at
the speed of light), and therefore, modeled with an algebraic
equation that relies on the inverse square law [74].

Ix =
Is

4× π × x2
(4)

Here, Is is the source’s light intensity (in lumens), x is
the distance from the source (in meters) and Ix denotes the
luminosity flux at distance x (in lux).

Sound. Sound also dissipates instantly over the air so it is also
modeled with an algebraic equation. The sound pressure level
(SP) in decibels (dB) is defined as follows [77].

SP2 = SP1 + 20× log10(
x1

x2
) (5)

In the formula, SP1 is the sound pressure level at distance
x1 and SP2 is the sound pressure level at distance x2. Given
SP1, x1 the sound pressure levels at any distance (x2) can be
derived with this formula. As a standard, x1 = 1 meters.

APPENDIX D
EVALUATION PARAMETERS

We present the evaluated events in our testbeds, and their
influences on sensor measurements in Table IV.
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TABLE IV: Events in our testbeds and sensors they influence.

Event Sound Sensor Illuminance Sensor Temperature Sensor
Studio Apartment Setup

Door-unlock 3 7 7
AC-on 3 7 3
TV-on 3 3 7
Monitor-on 7 3 7
Toaster-off 3 7 7
Light-Bulb-on 7 3 7
Heater-on 3 7 3

Patient Care Room Setup
TV-on 3 3 7
Alarm-on 7 3 7
Fan-on 3 7 3
Light-Bulb-on 7 3 7
Heater-on 3 7 3

3 means the event influences the sensor readings, 7 means it does not.

TABLE V: Actuator automata parameters.

Actuator Sound (dB) Illuminance (lumens) Temperature† (°F)
Studio Apartment Setup

Door 57 n/a n/a
AC 62 n/a 45
TV 58 250 n/a

Monitor n/a 150 n/a
Toaster 60 n/a n/a
Bulb n/a 1200 n/a

Heater 52 n/a 95
Patient Care Room Setup

TV 55 200 n/a
Alarm 65 n/a n/a

Fan 61 n/a 60
Bulb n/a 1000 n/a

Heater 52 n/a 95

† Temperature parameter denotes the temperature of the air directly exiting the actuator
(not the target air temperature).

The actuators used in our two experiments are different
from each other, except for the TV, bulb and heater. We use
separate TVs and bulbs in the two environmental setups, but
the same heater. We set the device property parameters in our
actuator automata using the (τ, ε)-closeness metric, as described
in Section V-C1. The details of the actuator parameters are
presented in Table V.

We use a photoresistor illuminance sensor, a BMP183
temperature sensor, and an LM393 sound detection sensor in the
studio apartment experiments. In the patient care room setup,
we replace the sound sensor with a numerical decibel-meter.
The threshold values used in dynamic testing and requirements
identification (LTL formulas) are determined based on the
sensitivity levels of the sensors and the noise level in the
environment. We determine the threshold as 1°C = 1.8°F for
the temperature sensor, 10 lux for the illuminance sensor, and
55 dB for the sound sensors.
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