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ABSTRACT
Facial authentication mechanisms are gaining traction on smart-

phones because of their convenience and increasingly good perfor-

mance of face recognition systems. However, mainstream systems

use traditional 2D face recognition technologies, which are vulner-

able to various spoofing attacks. Existing systems perform liveness
detection via specialized hardware, such as infrared dot projectors

and dedicated cameras. Although effective, such methods do not

alignwell with the smartphone industry’s desire tomaximize screen

space.

This paper presents a new liveness detection system, FaceRevelio,
for commodity smartphones with a single front camera. It utilizes

the smartphone screen to illuminate a user’s face from multiple

directions. The facial images captured under varying illumination

enable the recovery of the face surface normals via photometric

stereo, which can then be integrated into a 3D shape. We leverage

the facial depth features of this 3D surface to distinguish a human

face from its 2D counterpart. On top of this, we change the screen

via a light passcode consisting of a combination of random light

patterns to provide security against replay attacks. We evaluate

FaceRevelio with 30 users trying to authenticate under various light-

ing conditions and with a series of 2D spoofing attacks. The results

show that using a passcode of 1s , FaceRevelio achieves a mean EER

of 1.4% and 0.15% against photo and video attacks, respectively.
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1 INTRODUCTION
Considering the growingly extensive use of smartphones in all

aspects of our daily life, reliable user authentication for securing

private information and mobile payments is an absolute necessity.

Recent years have witnessed a rising usage of face authentication

on smartphones as a promising alternative to traditional password-

based protection mechanisms. Most of the existing face authentica-

tion systems use traditional 2D face recognition technologies, which

suffer from vulnerability to spoofing attacks where the attacker uses
2D photos/videos or 3D masks to bypass the authentication system.

Recently, some smartphone manufacturers have introduced live-
ness detection features to some of their high-end products, e.g.

iPhone X/XR/XS and HUAWEI Mate 20 Pro. These phones are

embedded with specialized hardware components on their screens

to detect the 3D structure of the user’s face. For example, Apple’s

TrueDepth system [1] employs an infrared dot projector coupled

with a dedicated infrared camera beside its traditional front camera.

Although effective, deployment of such specialized hardware

components, adding a notch on the screen, is against the bezel-less

trend in the smartphones’ market. Customers’ desire for higher

screen-to-body ratio has consequently forced manufacturers to

search for alternative methods. For example, Samsung recently

launched S10 as its first phone with face authentication and an

Infinity-O hole-punch display. However, S10’s lack of any special-

ized hardware for capturing facial depth, made it an easy target for

2D photo or video attacks [8].

Therefore, in this paper we ask the following question: How

can we enable liveness detection on smartphones only relying on a

single front camera?

Prior works on face liveness detection for defense against 2D

spoofing attacks have relied on computer vision techniques to de-

tect and analyze textural features for facial liveness clues like nose

and mouth features [15, 25], and skin reflectance [36]. Usually, ex-

tracting such characteristics from a face requires ideal lighting

conditions, which are hard to guarantee in practice. Another com-

mon approach is the use of challenge-response protocols where the

user is asked to respond to a random challenge, such as pronounc-

ing a word, blinking or other facial gestures. These techniques,

however, are unreliable because facial gestures can be simulated

using modern technologies, such as media-based facial forgery [29].

A time-constrained protocol was recently introduced to defend

against these attacks, which however still required the users to

make specific expressions [37]. The additional time-consuming ef-

forts and their reliance on users’ cooperation, make such protocols

harder to use in many scenarios, including but not limited to elderly

usage and emergency cases.

https://doi.org/10.1145/3372224.3419206
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In this paper, we introduce a novel face liveness system, FaceRev-
elio, that only uses the front camera on commodity smartphones.

Our system reconstructs 3D models of users’ faces in order to de-

fend against 2D-spoofing attacks. FaceRevelio exploits smartphone

screens as light sources to illuminate the human face from dif-

ferent angles. Our main idea is to display combinations of light

patterns on the screen and simultaneously record the reflection

of those patterns from the users’ faces via the front camera. We

employ a variant of photometric stereo [20] to reconstruct 3D facial

structures from the recorded videos. To this end, we recover four

stereo images of the face from the recorded video via a least squared

method and use these images to build a normal map of the face.

Finally, the 3D model of the face is reconstructed from the normal

map using a quadratic normal integration approach [34]. From this

reconstructed model, we analyze how the depth changes across a

human face compared to model reconstructed from a photograph

or video and train a deep neural network to detect various spoofing

attacks.

Implementing our idea of reconstructing the 3D face structure

for liveness detection using a single camera involved a series of

challenges. First, displaying simple and easily forgeable light pat-

terns on the screen makes the system susceptible to replay attacks.

To secure our system from replay attacks, we designed the novel

idea of a light passcode, which is a random combination of patterns

in which the screen intensity changes during the process of au-

thentication, such that an attacker would be unable to correctly

guess the random passcode. Second, in the presence of ambient

lighting, the intensity of the reflection of our light passcode was

small, hence difficult to separate from ambient lighting. In order

to make FaceRevelio practical in various realistic lighting condi-

tions, we carefully designed light passcodes to be orthogonal and

"zero-mean" to remove the impact of environment lighting. In ad-

dition, we had to separate the impact of each pattern from the

mixture of captured reflections to accurately recover the stereo

images via the least square method. For this purpose, we linearized

the camera responses by fixing camera exposure parameters and

reversing gamma correction [7]. Finally, the unknown direction

of lighting used in the four patterns causes an uncertainty in the

surface normals computed from the stereo images which could

lead to inaccurate 3D reconstruction. We designed an algorithm to

find this uncertainty using a general template for human surface

normals. We used landmark-aware mesh warping to fit this general

template to users’ face structures.

FaceRevelio is implemented as a prototype system on Samsung

S10 smartphone. By collecting 4900 videos with a resolution of

1280 × 960 and a frame rate of 30f ps , we evaluated FaceRevelio
with 30 volunteers under different lighting conditions. FaceReve-
lio achieves an EER of 1.4% for both dark and day light settings,

respectively against 2D printed photograph attacks. It detects the

replay video attacks with an EER of 0.0%, and 0.3% for each lighting,

respectively.

The contributions in this paper are summarized as follows:

(1) We design a liveness detection system for commodity smart-

phones with only a single front camera by reconstructing

the 3D surface of the face, without relying on any extra

hardware or human cooperation.

(2) We introduce the notion of light passcodes which combines

randomly-generated lighting patterns on four quarters of the

screen. Light passcode enables reconstructing 3D structures

from stereo images and more importantly, defends against

replay attacks.

(3) We implement FaceRevelio as an application on Android

phones and evaluate the system performance on 30 users in

different scenarios. Our evaluations show promising results

on applicability and effectiveness of FaceRevelio.

2 BACKGROUND
In this section, we introduce photometric stereo and explain how

it is used for 3D reconstruction under known/unknown lighting

conditions.

Photometric stereo is a technique for recovering the 3D surface

of an object using multiple images in which the object is fixed and

lighting conditions vary [40]. Its key idea is to utilize the fact that

the amount of light that a surface reflects depends on the orientation

of the surface with respect to the light source and the camera.

Computing Normals under Known Lighting Conditions:
Besides the original assumptions under which photometric stereo

is normally used [40] (e.g. point light sources, uniform albedo, etc.),

we now assume that the illumination is known.

Given three point light sources, the surface normal vectors S can

be computed by solving the following linear equation based on the

two known variables:

IT = LT S, (1)

where I = [I1, I2, I3] is the stacked three stereo images exposed to

different illumination, and L = [L1,L2,L3] is the lighting direction
for these three images. Note that at least three images under variant

lighting conditions are required to solve this equation and to make

sure that the surface normals are constrained.

ComputingNormals underUnknownLightingConditions:
Now we consider the case when the lighting conditions are un-

known. The matrix of intensity measurements is further denoted

asM , which is of sizem × n wherem is the number of images and

n is the number of pixels in each image. Therefore

M = LT S . (2)

For solving this approximation,M is factorized using Singular

Value Decomposition (SVD) [38]. Using SVD the following is ob-

tained

M = U ΣVT . (3)

This decomposition can be used to recover L and S in the form

of LT = U
√
ΣA and S = A−1

√
ΣVT

, where A is an 3 × 3 linear

ambiguity matrix. [20] provides the details about how this equation

can be solved with four images under different lighting conditions.

3 FACEREVELIO SYSTEM OVERVIEW
FaceRevelio is a liveness detection system designed to defend against

various spoofing attacks on face authentication systems.

Figure 1 shows an overview of FaceRevelio’s architecture. It be-
gins its operation by dividing the phone screen into four quarters

and using each of them as a light source. Random Light Passcode
Generator module is used to select a random light passcode which

is a collection of four orthogonal light patterns displayed in the
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Figure 1: System overview

four quarters of the phone screen. The front camera records a video

clip containing the reflection of these light patterns from the user’s

face. These light patterns are not only used during video recording,

but also help reconstruct 3D structure of the face and detect replay

attacks. The recorded video then passes through a preprocessing

module where first face region is extracted and aligned in each

adjacent video frame. This is followed by an inverse gamma cali-

bration operation applied to each frame to ensure linear camera

response. Finally, the video is filtered by constructing its Gaussian

Pyramid [13], where each frame is smoothed and subsampled to

remove noise. After preprocessing, a temporal correlation between

the passcode in the video frames and the one generated by the

Random Light Passcode Generator is checked. If a high correlation

is verified, the filtered video frames along with the random light

passcode are fed into an Image Recovery module. The goal of this

module is to recover the four stereo images corresponding to the

four light sources, by utilizing the linearity of the camera response.

The recovered stereo images are then used to compute face sur-

face normals under unknown lighting conditions using a variant

of photometric stereo technique [20]. A generalized human nor-

mal map template and its 2D wired mesh connecting the facial

landmarks are used to compute these normals accurately. A 3D

face is finally reconstructed from the surface normals by using a

quadratic normal integration method [34]. Once the 3D structure

is reconstructed, it is passed on to a liveness detection decision

model. Here, a Siamese neural network [24] is trained to extract

depth features from a known sample human face depth map and

the reconstructed candidate 3D face. These feature vectors are then

compared via L1 distance and a sigmoid activation function to give

a similarity score for the two feature vectors. The decision model

declares the 3D face as a real human face if this score is above a

threshold and detects a spoofing attack otherwise.

4 FACEREVELIO ATTACK MODEL
Attacks to face authentication techniques can be classified into

static and dynamic attacks. In a 2D static attack, a still object such

as a photograph or mask is used, such that the face recognition

algorithms would not be able to differentiate these presented ob-

jects from an actual face. Dynamic attacks aim at spoofing systems

where some form of user action is required like making an expres-

sion or a gesture. In these attacks, a video of the user is replayed

performing the requested action. These videos can easily be forged

by merging user’s public photos with its facial characteristics. Ad-

versaries can also launch a 3D static attack by using 3D models of

the face. However, this requires advanced 3D printing capabilities

which requires high cost. Similarly, 3D dynamic attacks involving

building a 3D model in virtual settings, are impractical as described

in [37].

In this paper, our goal is to prevent adversaries from spoofing

face authentication systems with 2D static and dynamic attacks.

We assume that an attacker has access to high-quality images of

the legitimate user’s face. We also assume that the adversary can

record a video of the user while using FaceRevelio. In this case,

the recorded video will capture the light patterns’ reflections from

the user’s face. The attacker prepares these videos beforehand and

launches an offline attack on our system by displaying them on a

laptop screen/monitor. An adversary can possibly conduct an online

attack if they have access to high-speed cameras, powerful comput-

ers, and a specialized screen with a fast refreshing rate such that it

can capture and recognize the random passcode displayed on the

screen on each use of the system, forge appropriate face responses

depending on the passcode, and present the forged responses to

the system. However, because of these difficult requirements for

conducting such an attack, we believe that 2D attacks with pho-

tos/videos are still the major threat and the main focus of our paper.

5 FACEREVELIO SYSTEM DESIGN
5.1 Light Passcode Generator
To apply photometric stereo, we need to generate four images of

the face illuminated under various light sources, from different

directions. In order to simulate these light sources using the phone

screen, we divide the screen into four quarters where each quarter

is assumed a light source. During the video recording, each of these

quarters is illuminated alternately in four equal intervals, while

the other three quarters are dark. Figure 2 shows how the screen

changes with different patterns during the four intervals and an

example of the 3D reconstruction of the face using these patterns.

Random Passcode Generator: It could be argued that using

these basic light patterns, the system would be prone to replay

attacks. Keeping this in mind, we consider the idea of illuminating

all the four quarters together for a certain period and changing the
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1 2 3 4

Figure 2: An example of 3D reconstruction using four basic
light patterns displayed on four quarters of the screen.

screen lighting randomly at each time instance and each quarter to

a random value drawn from a continuous range between −1 and

1. Now, each quarter of the screen is illuminated simultaneously

with a random pixel value, simulating four light sources. Based on

this, we define a light passcode as a collection of four random light

patterns displayed in the four quarters. In the rest of the paper, we

will use passcode as a short-term for light passcode.
For the passcode, a random light pattern Pj is generated for a

quarter j. During a time interval ts , Pj is the light pattern repre-

sented as a sequence of random numbers, between −1 and 1, of

length ts . The light pattern represents what each pixel of the screen

is set to in the quarter j. In order to account for the smartphone

screen refreshing rate, we apply an ideal low pass filter with a

frequency threshold of 3Hz to each of the four light patterns. Al-

though current smartphone screens support a refreshing rate of

60Hz, there is a delay when the screen is gradually updated from

top to bottom. As a result, when the frequency threshold is set to

a higher value, the intensity within each quarter may not be con-

sistent. Additionally, setting a higher frequency threshold would

result in rapid changes in the screen intensity, making it uncom-

fortable for users’ eyes. These filtered patterns are then normalized

such that each pattern is zero-mean.

One problem in illuminating the four quarters together is that

the recorded video has a mixture of reflections of the four light

patterns from the face. To be able to recover the stereo images from

the mixture of reflections, we guarantee independence when com-

bining the light patterns into a passcode. On top of ensuring their

independence, we also introduce orthogonality between these four

patterns. We apply Gram-Schmidt [18] process to the four light

patterns to get their orthogonal basis and use these as patterns.

Orthogonality assures a good separation between the impact of the

four patterns on the human face and hence helps in the recovery

of stereo images. Using induction and the fact that Gram-Schmidt

process is linear, we can prove that if each of the original patterns

satisfies the frequency threshold of 3Hz, the resulting orthogonal

patterns are also within 3Hz. Figure 3 shows an example of a pass-

code with four patterns and the FFT of these patterns before and

after the application of Gram-Schmidt process. We can see that the

FFT of the patterns generated after applying Gram-Schmidt to the

filtered random sequence only has components below 3Hz. On a

side note, the above process is analogous to code-division multiple

access (CDMA) [39] used in radio communications. In our case, the

face is analogous to the shared media, the camera is the receiver

and our orthogonal patterns are like the codes in CDMA. The stereo

images generated by each independent quarter are like the data bit

sent by each user. The difference is that in our case, we design and

use patterns of continuous values that satisfy a frequency bound

requirement.

As a result of the above steps, we obtain four orthogonal zero-

mean light patterns, forming a passcode. Each value in the passcode

is then multiplied with an amplitude of 60 and finally the passcode

is added on top of a constant base pixel intensity value of 128 to be

displayed on the screen. Here, note that the Section 5.5 describes

how the passcodes are used to defend against replay video attacks.

5.2 Video Preprocessing and Filtering
After generating a random passcode, the corresponding light pat-

terns are displayed on the smartphone screen. Meanwhile, a video

of their reflections from a user’s face is recorded using the front

camera. From the recorded video, first, we locate and extract the

face in each frame by identifying the facial landmarks (83 land-

marks) using Face++ [2]. We then use these landmarks to align the

face position in every adjacent frame to neutralize the impact of

slight head movements and hand tremors.

Since our following algorithms focus on how the changes in

lighting conditions affect the captured face images, we preprocess

the recorded video by converting each frame from the color space

to the HSV space [10]. Only the V component will be kept and the

other two components are discarded since the V component reflects

the brightness of an image. Then, each video frame represented by

the V component is further processed using Gaussian pyramid [13]

which is a standard technique used in signal processing to filter

noise and achieve a smoother output. We used Gaussian pyramid to

remove any inherent camera sensor noise. Additionally, pyramids

reduce the size of the input video frames by decreasing the spatial

sampling density while retaining the important features within the

frame, which in turn reduces the system’s processing time. We use

two levels of pyramid and select the peak of the pyramid in the

subsequent steps for video analysis.

5.3 Image Recovery
Recall that in photometric stereo, at least three stereo images with

different single light sources are needed for computing the surface

normals. However, what we obtained so far is a series of frames,

in which the lighting on the face at any given time is a combined

effect of all four light patterns on the screen. Therefore, we need to

recover these stereo images for each quarter from the preprocessed

video frames, which is different from the traditional way of directly

collecting stereo images used for photometric stereo.

Based on the theory that the intensities of incoherent lights add

linearly [22], we propose to recover the stereo images by directly

solving the equation,G =WX , whereG is a f ×n matrix represent-

ing the light intensity values received on each pixel in the recorded

video frames, where f is the number of frames and n is the num-

ber of pixels in one frame.W represents the f × 4 light patterns
[P1; P2; P3; P4] used while recording the video. X (= [I1; I2; I3; I4])
is a 4 × n matrix representing the four stereo images that we aim

to recover. This equation utilizes the fact that under a combined

lighting condition, the light intensity received on a certain pixel

is a weighted sum of four light intensities with a single light from

each quarter.

However, we cannot directly use the above equation unless under

the assumption that camera sensors can accurately capture light

intensities and reflect the actual values. Problems, e.g. inaccurate

image recovery, will arise if we ignore the possible effects of camera
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Figure 3: An example of a random passcode. The top row shows the four random patterns in the passcode before and after
low-pass filtering and the final patterns after applying Gram-Schmidt process to the filtered pattern. The bottom row shows
the FFT of these patterns before and after applying Gram-Schmidt process. The frequency bound still holds after applying
Gram-Schmidt process.

parameters and sensitivity. Recently, smartphone camera APIs
1

started supporting manual camera mode which gives the user full

control of the exposure parameters, i.e. aperture, shutter speed

(exposure time) and sensitivity (ISO). In automatic mode, the camera

continuously adjusts its ISO to compensate for lighting changes

in the scene. In order to have a smoother camera response with

changing light intensity, we use the camera in manual mode where

its ISO is set to a fixed value.

Although the camera response curve is smooth after fixing the

ISO, we still need to linearize the relationship between the image

captured and the light from the screen to be able to use the equation

for solving G. For this purpose, we dig deep into the mechanics of

the camera sensor and image processing involved in generating

the final output images. Cameras typically apply a series of oper-

ations on the raw camera sensor data to give us the final output

images. These include linearization of sensor data, white balancing,

demosaicing [6] and gamma calibration [7]. Gamma calibration is

where non-linearity arises between the captured pixel values and

the light intensity from the scene. In order to make use of linear

relationship between these two, we apply an inverse of the gamma

calibration, to the recorded video frames obtained from the camera.

As a result, the resulting pixel values in the range between black

and saturation level have a linear relationship with the actual light

present in the scene. This relationship can be formulated as the

linear model, y = kx + b, where b is the y-intercept introduced

to account for the non-zero black level of the camera sensor. This

inverse calibration is applied to each frame in the video preprocess-

ing before face extraction. Now by generalizing the linear model to

every frame, containing multiple pixels, we get

K = kG + B, (4)

where K is the video frames that the camera actually captured for

the duration of the passcode. By substituting the definition of G
into Equation 4, we get

K = kWX + B. (5)

1
Android supports manual camera mode starting from Android Lollipop 5.1

Finally, we use the least square method to solve

WX =
1

k
(K − B) (6)

which can be written as

X = (WTW )−1WT (
1

k
(K − B)) (7)

Here, notice that B is a constant matrix and since each of the

four patterns in the passcodeW are zero-mean, the termWT B will

be eliminated. Hence Equation 7 becomes:

X = (WTW )−1WT (
1

k
K) (8)

Note that this solution X will have an uncertainty of a scale

factor. For any α > 0, let X ′ = αX , k ′ = 1

α k . X
′
, k ′ will also

minimize the above function.

However, this will not have an impact on the reconstructed

surface normals. Recall, that surface normals are computed by

taking SVD of the stereo images. So, when X and X ′ are both

factorized using SVD, the decompositions are

X = U ΣVT , (9)

X ′ = U (αΣ)VT . (10)

The surface normal VT
will stay the same in these two cases.

From the above observation, we can set k = 1 without any impact

on the surface normals. Now, we can solve for X ′ by

X ′ = (WTW )−1WTK (11)

So far, we assumed that the only light present in the scene is due

to the passcode displayed on the screen. However, we still need to

consider the ambient light present in the scene as well as the base

intensity value of the screen on top of which the passcode is added.

To account for these other light sources, Equation 5 now becomes

K = kWX + B +C (12)

where C is the constant light present in the scene. Again, since C
is a constant, because of the orthogonal and zero-mean nature of

our passcode,W ,WTC will become 0. As a result, Equation 11 will

give a solution for X even when ambient light is present.

Due to the inherent delay in the camera hardware, the recorded

video may have some extra frames and the timestamps for each
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Figure 4: The recovered stereo images corresponding to the
four patterns in the passcode. The bottom row shows a bi-
nary representation to emphasize the differences in these
stereo images.

video frame captured and the four patterns displayed on the screen

at that point may differ. To ensure that we obtain a correct and

fine alignment between these two, we first compute the average

brightness of each frame and then apply a low pass filter on the

average brightness across frames. The peaks and valleys in the

average brightness are matched with those of the passcode and

finally, DTW [11] is used to align the two series correctly. Once

aligned, the result is the video frames which exactly represent the

reflection of the passcode from the face. These video frames are

then given as input to Equation 11 to recover the four stereo images

as X . We define the average brightness of these video frames as the

recorded passcode for later sections.

An example of the recovered four stereo images corresponding

to every single light i.e. four patterns displayed in each quarter

is shown in Figure 4. The top 4 images are the recovered stereo

images. The bottom images are the binary representation of these

stereo images such that in each image, a pixel value is 1 if the pixel

in the corresponding stereo image is larger than the mean value

of the same pixel in the other three stereo images. This binary

representation is just to visually emphasize how different these

stereo images are and how they represent the face illuminated from

lighting in four different directions.

5.4 Photometric Stereo and 3D Reconstruction
The stereo images recovered from the least squared method approx-

imate the facial images taken with four different point lights. Now,

we can use these stereo images to compute the surface normals of

the face as described in Section 2.

However, as mentioned earlier, these surface normals have an

ambiguity of matrix A. We design an algorithm illustrated in Algo-

rithm 1 to compute the normals without this uncertainty. We use a

generalized template, Nt , for the surface normals of a human face

and use this to solve forA. This template can be the surface normals

of any human face recovered without any ambiguity like surface

normals computed when the lighting is known. Note that obtaining

this template is a one-time effort and the same normal template

is used for all users. Along with the normal map, we also have a

2D wired triangulated mesh,Mt , connecting the facial landmarks

(vertices), for this template. Now, when computing the normals

of a user subject, we use the facial landmarks detected from an

RGB image of the face to build a triangulated mesh of the face,M ,

usingMt as a reference for connecting the vertices and triangles. A

representation of this mesh can be seen in Figure 5 (left). An affine

transformation from the template mesh, Mt to M is then found

independently for each corresponding pair of triangles in the two

ALGORITHM 1: Surface Normal Computation

Data: normal map template Nt , template mesh Mt , stacked four

stereo images I and face RGB image R
Result: surface normals S
1: V ← дet FaceLandmarks(R)
2: M ← buildMesh(V , Mt )

3: Ŝ, ˆLT ← SV D(I )
4: N ′t ← transf orm(Nt , Mt , M )
5: Solve N ′t = AŜ for A

6: S ′ ← AŜ
7: Ms ← symmetr izeMesh(M )
8: S ← transf orm(S, M, Ms )

9: S ← ad justNormalV alues(S )
10:

11: function transform(Z , T1, T2)
12: for each pair of triangles < t1, t2 >∈ T1, T2 do
13: a ← af f ineT ransf ormation(t1, t2)
14: Zout ← warp(Z (t1), a)
15: Z (t2) ← Zout
16: end function

meshes and applied to the matching piece in Nt . As a result, the

transformed normal map template, N ′t now fits the face structure

of the user. This transformed template can finally be used to find

the unknown A, by solving N ′t = AŜ where Ŝ are the approximate

normals recovered from SVD, and obtain the surface normals, S ′.
The last step in normal map computation is to make the normal map

symmetric. This is needed to reduce noise in the recovered stereo

images and hence the surface normals. We first find the center axis

of the 2D face mesh using landmarks on the face contour, nose tip

and mouth. Once the center is found, each pairing landmarks like

eyes, eyebrow corner etc. are adjusted such that they have equal

distance to the center to get a symmetric mesh. After symmetrizing

the mesh, we fit S into this symmetrized mesh. Now, we can easily

apply inverse symmetry to the x component of S and symmetrize

the values in y and z components of S . Note that by introducing

symmetry, we might loose some tiny details of the facial features

as all human faces are not symmetrical. However, since our goal

is to distinguish the human face from their spoofing counterpart

and not another human, the information retained in the surface

normals is more than sufficient. Figure 5 (right) shows an example

of the x , y and z components of a normal map generated from our

algorithm.

Figure 5: Normal map calculation (left) shows 2D triangu-
lated face mesh generated by using facial landmarks. (right)
shows the X , Y and Z components of the normal map gener-
ated from Algorithm 1.

After we have successfully recovered the surface normals, we

can reconstruct the 3D surface of the face from them. For 3D re-

construction, we follow the quadratic normal integration approach
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described in [34]. The results of 3D reconstruction are shown in

Figure 6. Side and top view are shown for each reconstructed model.

Figure 6: Examples of 3D reconstruction from human faces.
Side and top views are shown.

5.5 Liveness Detection
FaceRevelio aims to provide security against two broad categories

of spoofing attacks: 2D printed photograph attack and video replay

attack.

2D Printed Photograph Attack: To defend against the 2D

printed photograph attacks, we need to determine whether the

reconstructed 3D face belongs to a real/live person or a printed

photograph. Figure 7 shows examples of 3D reconstruction from

a printed photograph using the approach described in the previ-

ous section. It is interesting to note here that the same general

human face normal map template is used for computing the sur-

face normals of a photograph. As a result, the overall structure of

the reconstructed model looks similar to a human face. However,

even when using this human normal map template, the freedom

provided by solving for A is only up to 9 dimensions. Therefore,

despite having a similar structure, the reconstruction from the 2D

photograph lacks depth details in facial features, e.g. nose, mouth

and eyes, as is clear in the examples in Figure 7.

Based on these observations, we employ a deep neural network to

extract facial depth features from the 3D reconstruction and classify

it as a human face or a spoofing attempt. We train a Siamese neural

network adapted from [24] for this purpose. The Siamese network

consists of two parallel neural networks whose architecture is the

same, however, their inputs are different. One of these networks

takes in a known depth map of a human face while the other is

given the candidate depth map obtained after the 3D reconstruction.

Therefore, the input to the Siamese network is a pair of depth maps.
Both the neural networks in the Siamese network output a feature

vector for their inputs. These feature vectors are then compared

using L1 distance and a sigmoid activation function. The final output

of the Siamese network is the probability of the candidate depth

map being that of a real human face. If this output value is above a

predefined threshold, τs , the system detects a real face. Otherwise,

Figure 7: Examples of 3D reconstruction from 2D printed
photographs.
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Figure 8: Architecture of the Siamese neural network. One
of the twin neural networks takes a known human depth
map as input while the other is passed the candidate 3D re-
construction.

a spoofing attempt is identified. Figure 8 shows the architecture of

the Siamese network.

To elaborate the training process for our Siamese network, sup-

pose we have N depth maps collected from human subjects and N
depth maps from their photos/videos. From these depth maps, we

obtain N (N − 1)/2 pairs of positive samples where both the depth

maps in the pair are from human subjects. For the negative samples,

we have N 2
pairs where one depth map is of a human subject while

the other is from a photo/video. Since the total number of negative

samples is larger than the positive samples, we randomly select

N (N − 1)/2 samples from the negative pairs. These positive and

negative samples are then used as input to train the Siamese net-

work. Every time a subject tries to authenticate using FaceRevelio,
the reconstructed 3D model along with a sample human depth map

is fed as the input pair to the Siamese network. Here, note that the

sample human depth map can be any depth map obtained from our

reconstruction algorithm from a human subject in the training set

and does not require registration by the test subject.

Since Siamese network uses the concept of one-shot learning [19]

and takes pairs as input for training, the amount of data required

for training is much smaller than traditional convolutional neural

networks. Here, one may argue that why not train the model with

the raw images/videos captured by the front camera, for the dura-

tion of passcode, instead of the depth map to decide if the subject

is a human or not? Although intuitive, training such classifiers

would require huge amounts of data; datasets for different environ-

ment settings, different light passcodes, different distances between

the face and phone and various face orientations. In contrast, our

image recovery module and approach for reconstructing the 3D

surface of the face account for the ambient lighting and different

orientations of the face before generating the depth map. Training

a model using these depth maps ensures that input to our network

is not impacted by the various ambient environment conditions;

hence, much less data is required for training. Furthermore, models

with video input are more complex with larger number of trainable

parameters, resulting in higher storage and computation costs.

Video Replay Attacks: FaceRevelio has a two-fold approach for
defending against video replay attacks. The first line of defense is

to utilize the randomness of the passcode. When a human subject

tries to authenticate via FaceRevelio, the passcode displayed on the

screen is reflected from the face and captured by the camera. As a

result, the average brightness of the video frames across time has a

high correlation with the light incident upon the face i.e. the sum
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Figure 9: Video Replay Attack: (left) shows the distribution
of correlation between recorded passcodes fromhuman face
and the original passcode. (right) shows the percentage of
passcodes which have a correlation with another random
passcode higher than a threshold for different thresholds.

of the four patterns in the passcode displayed on the screen. Figure

9 (left) shows a distribution of the correlation between recorded

passcodes and the original passcode for experiments conducted

with humans. The correlation between the two passcodes is higher

than 0.85 for more than 99.9% of the cases. An adversary may

try to spoof our system by recording a video of a genuine user

while using FaceRevelio and replay this video on a laptop screen or

monitor in front of the phone later. In this case, the video frames

captured by the camera will have the reflections of the passcode

on the phone screen as well as the passcode present in the replay

video. Since FaceRevelio chooses a totally random passcode each

time as described in 5.1, the probability that the passcode displayed

on the screen and the passcode in the video has a high correlation

is extremely low. To give an idea, for a passcode duration of 3s , if
we compare 300 million pairs of random passcodes, only 0.0003% of

the pairs will have a correlation greater than 0.84. Figure 9 (right)

shows the percentage of passcode with a correlation higher than

threshold values 0.84, 0.85 and 0.86 for passcode lengths of 1, 2

and 3s . Hence, just by computing and setting a threshold on the

correlation between the recorded passcode and the sum of passcode

from the screen, the chances of detecting a replay attack are very

high.

For the rare cases when the correlation is higher than the prede-

fined threshold, our second line of defense comes into play. Similar

to 2D photograph attack, video replay attacks can also be detected

using the reconstructed 3D model. The reconstruction from the

replayed video suffers from two main problems. First, it is hard for

the adversary to accurately synchronize playing the attack video

with the start of the passcode display on the smartphones. Second,

even if the correlation passes the threshold, there will be some

differences in the replayed passcode and FaceRevelio’s passcode.
Because of this, the DTW matching will not match the recorded

video frames with the displayed passcode very well. Hence, the

four stereo images, X , obtained by solving equation 11 will not

be representative of the subject’s face being illuminated from four

different lighting directions. As a result, the surface normals and

3D reconstruction from these wrong stereo images do not capture

the 3D features of the face and is sufficient to identify a spoofing

attempt.

6 EVALUATION
We describe the implementation and evaluation of our system in

this section. We first describe the experiment settings and the data

collection details and then the performance of our system in differ-

ent settings.

6.1 Implementation and Data Collection
We implemented a prototype for FaceRevelio on Samsung S10 which

runs Android 9, with 10 MP front camera that supports Camera2

API. The videos collected for our authentication system have a

resolution of 1280x960 and a frame rate of 30fps. For each experi-

ment setting, we display the passcode patterns on the smartphone

screen and record a video of the reflections from the user’s face via

the front camera. We use Face++ [2] for landmark detection and

OpenCV in the image recovery and reconstruction modules of our

system. Python libraries for TensorFlow [9] and Keras were used to

train the neural network for liveness detection while TensorFlow

Lite was used for inference on Android.

We evaluated FaceRevelio with 30 volunteers using our system

for liveness detection. The volunteers included 19 males and 11

females with ages ranging from 18 to 60. These volunteers belonged

to different ethnic backgrounds including Americans, Asians, Euro-

peans and Africans. During the experiments, the volunteers were

asked to hold the phone in front of their faces and press a button

on the screen to start the liveness detection process. Once the but-

ton was clicked, the front camera started recording a video for the

duration of the passcode. During all experiments, we collected a

high-quality image of the user to test the performance of our sys-

tem against photo attacks. For the video replay attack, we used the

videos collected from real users and replayed them to the system.

We collected a total of 4900 videos from the 30 volunteers over a

duration of 3 weeks. We evaluated the performance of our system in

natural daylight as well as in completely dark environment (0 lux).

For the daylight setting, all experiments were conducted during

daytime however the light intensity varied (between 200 to 5000

lux) based on the weather conditions on the day and time of the

experiment. Each volunteer performed 10 trials of liveness detection

using our system for each of the two light settings. A random

passcode of 1s duration was added on top of a gray background

(grayscale intensity value of 128) for these trials. We also tested

FaceRevelio with passcode durations of 2 and 3s in the two light

settings. We also evaluated the impact of indoor lighting (∼ 250 lux),

the distance between the face and the smartphone screen and the

orientation of the face, on the performance of our system. For these

scenarios, we collected data from 10 volunteers with a passcode

duration of 1s . These volunteers used the system 30 times for each

scenario. In addition, we also explored whether using a background

image affects FaceRevelio’s performance.

We used the Siamese neural network described in section 5.5

to test each user. We employed a leave-one-out method for each

test user where we used the depth maps generated from the data

collected from the remaining 29 users for training. From these 29

users’ data, we used 80% of the data as the training set while the

remaining 20% was used for validation. Hence, the test user’s data

remained unseen by the network during the training process. At

inference time, the depth map from the test subject along with

a sample human depth map, randomly selected from the human

depth maps collected from the other 29 subjects, was given as the

input pair to the Siamese network. The predefined threshold, τs ,
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for classifying the test subject as a real human or not, was set to

0.7 for the evaluation.

6.2 Performance Results
For evaluating FaceRevelio system performance, we answer the

following questions:

(1) What is the overall performance of FaceRevelio?
To determine the overall performance of our system, we evalu-

ated our system’s ability to defend against 2D printed photographs

and video replay attacks. We report the accuracy of our system as

the true and false accept rate for the two light settings. We also

determine the equal error rate (EER) for the attacks.

Figure 10: ROC curve for detecting photo attack in dark and
daylight setting with a passcode of 1s. The detection rate is
99.7 and 99.3% when true accept rate is 98% and 97.7% for the
two settings respectively.

First, we describe our system’s performance against printed

photograph attack. Figure 10 shows the ROC curve for FaceRevelio’s
defense against photo attack in the dark and daylight setting with

a passcode duration of 1s . For dark setting, with a true accept rate

of 98%, the false accept rate is only 0.33%. This means that a photo

attack is detected with an accuracy of 99.7% when the real user is

rejected in 2% of the trials. The EER for the dark setting is 1.4%. In

daylight, the photo attack is detected with an accuracy of 99.3%

when the true accept rate is 97.7%. The EER in this case is also 1.4%.

FaceRevelio performs better in dark setting because the impact of

our light passcode is stronger when the ambient lighting is weaker.

Hence, the signal-to-noise ratio in the recorded reflections from

the face is higher, resulting in a better 3D reconstruction.
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Figure 11: Distribution of the correlation between the pass-
code on the phone and the camera response from real hu-
man and video attack combined for dark and daylight set-
ting.

We also evaluated our system against video replay attacks by

using videos collected from the volunteers during the experiments.

Each video was played on a Lenovo Thinkpad laptop, with a screen

resolution of 1920 x 1080, in front of a Samsung S10 with FaceRevelio
installed. Our system detected these video replay attacks with an

EER of 0% in dark and 0.3% in daylight settings. Figure 11 shows

a histogram of the correlation between the passcode displayed on

the phone and the camera response for all experiments with 1s
long passcode. The correlation for all the attack videos is less than

0.9. In contrast, 99.8% of the videos from real human users have a

correlation higher than 0.9.

Figure 12: Processing time of the different modules of the
system for a passcode of 1s duration.

Another performance metric is the total time it takes to detect

liveness with FaceRevelio. Figure 12 shows the processing time of

the different modules of our system. On top of the signal duration

of the passcode, the liveness detection process only takes 0.13s
in total. The stereo images recovery only takes 3.6ms . The most

expensive computation step is the normal map computation, taking

56ms , since it involves two 2D warping transformations. 3D recon-

struction and feature extraction and comparison via the Siamese

network take 38.1 and 35.4 ms respectively.

(2) What is the effect of the duration of the light pass-
code?

Figure 13: ROC curve for passcode durations of 1, 2 and 3

seconds in dark (left) and daylight (right) settings.

To answer this question, we tested the performance using pass-

codes of time durations 1, 2 and 3s . Figure 13 shows the ROC curve

for photo attack with different passcode duration in dark (left) and

daylight (right) settings. In dark, the attacks are detected with an

accuracy of 99.7% for passcodes of length 1, 2 and 3 seconds each.

These accuracies are achieved when the true accept rate is 98%,

99% and 99.3% for the three time durations respectively. The EER is

1.44% for 1s and 0.7% for 2 and 3 each. For daylight, the detection

accuracy is 99.3% for 1s and 2s . For 3s , the photograph attack is

detected with an accuracy of 99.7%. These accuracies are achieved

when the true accept rate is 97.7%, 98.3% and 99.3% for 1, 2 and

3s respectively. We observe that the performance of FaceRevelio
improves as we increase the duration of the passcode. Although the
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true accept rate deteriorates when a passcode of 1s is used, achiev-
ing a higher attack detection accuracy within a short duration is

the priority of an effective liveness detection system.
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Figure 14: Distribution of the correlation between passcode
on the phone and the camera response from real human and
video attack for 2s (left) and 3s (right) long passcodes.

We also evaluated the effect of passcode duration on detecting

video attacks. Figure 14 shows the correlation distribution for hu-

man and video attack combined for passcode duration of 2 (Figure

14 left) and 3 (Figure 14 right) seconds in the two light settings.

For 2s , all the video attacks have a correlation less than 0.84 while

99.8% of the human data have a correlation higher than 0.86. In

case of 3s , 99.8% of the real human experiments have a correlation

higher than 0.8. In comparison, all attack videos have correlation

of less than 0.8.

We also determine the effect of the passcode duration on the

processing time in the authentication phase. The duration of the

passcode only affects the time taken to determine the least squared

solution for recovering the four stereo images as that depends on

the number of frames in the recorded video. The computation time

for the other components of the system stays consistent across

different passcode duration. The total processing time remains

below 0.15s for all three passcode durations.

(3)Howwell does FaceRevelio perform in indoor lighting?
To evaluate the effect of indoor lighting, we conducted experi-

ments with 10 volunteers in a room with multiple lights on. The

goal was to determine if this extra light had any impact on the

efficacy of our light passcode. In these experiments, we used 1s
long passcodes. For a true accept rate of 98%, FaceRevelio’s accuracy
against 2D attacks is 99.7%. It achieves an EER of 1.4% which is

comparable to the dark setting. Hence, we conclude that FaceRevelio
performs well even when artificial light is present in the scene.

Figure 15: ROC curve for different face to smartphone
screen distances with a passcode duration of 1s.

(4) What is the impact of the smartphone’s distance from
the face on FaceRevelio’s performance?

We evaluated the effect of distance between the face and the

smartphone screen by conducting experiments with 10 volunteers.

First, we asked the volunteers to hold the smartphone naturally in

front of their face such that their face is within the camera view and

use our system. We measured the distance in this scenario for each

volunteer and observed that the average distance between the face

and the screen during these experiments was 27cm. Later, we guided

the volunteers to use FaceRevelio while holding the smartphone at

various distances from their face, more specifically, at 20cm, 30cm
and 40cm.

Figure 15 shows the ROC curve for FaceRevelio performance

against 2D attack for various distances between the face and the

smartphone screen. For both the natural distance and 30cm, Fac-
eRevelio detects the 2D attack with an accuracy of 99.3% when

the true accept rate is 98%. The detection accuracy is 99.7% with

a true accept rate of 98% when the distance between the face and

the screen is 20cm. We also observe that FaceRevelio’s detection
accuracy remains 99.3% when the smartphone’s distance from the

face is increased to 40cm. This shows that FaceRevelio can defend

spoofing attempts even when the distance is relatively large. The

true accept rate deteriorates slightly to 96.7% in this case. The lower

true accept rate, however, does not impact the usability (since users

usually hold the phone at a closer distance) and more importantly,

the security (since detection accuracy is still high) of FaceRevelio.

Figure 16: ROC curve for different face orientations with a
passcode duration of 1s.

(5) Does the orientation of the face affect FaceRevelio’s per-
formance?

For evaluating the impact of face orientation on FaceRevelio’s
performance, we first requested the volunteers to hold the phone

naturally while keeping their face vertically aligned to the smart-

phone screen and use our system.We then instructed them to rotate

their head up, down, le f t and riдht and perform trials for each face

orientation. Figure 16 shows the performance of our system for

the various face orientations. For the natural case, FaceRevelio’s
detection accuracy is 99.7% when the true accept rate is 98.3%.

FaceRevelio can detect the 2D attacks with an accuracy of 99.3%

with a true accept rate of 98%, 98.3%, 98% and 98.3% for the up,
down, le f t and riдht face orientations respectively. The EER for

the natural face orientation as well as the four rotated face poses

is 1.44%. This shows that FaceRevelio can defend against spoofing

attempts for different orientations of the face attributing to the

facial landmark aware mesh warping used in the surface normal

computation described in section 5.4.

(6) What is the effect of displaying the signal on a back-
ground image?

So far, we used gray image as a base for the light passcode dis-

played on the screen to evaluate our system. Here we want to

determine how the system performance change if we used an RGB
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Algorithm Attack
Resistance

Special
Hardware?

User Interaction
Required? Limitation Accuracy

FaceID [1] 2D & 3D TrueDepth No 3D head mask attack > 99.9%

Samsung FR [4] None No No Photo Attack -

EchoFace [14] 2D photo No No Audible sound 96%

FaceCloseup [30] 2D photo/video No Requires moving the phone Slow response 99.48%

EchoPrint [42] 2D photo/video No No

Audible sound, low accuracy in

low illumination
93.75%

Face Flashing [37] 2D photo/video No Requires expression Slow response 98.8%

FaceHeart [16] 2D photo/video No Place fingertip on back camera Low accuracy in low illumination EER 5.98%

FaceLive [29] 2D photo/video No Requires moving the phone

Slow, low accuracy in

low illumination
EER 4.7%

Patel et al. [33] 2D photo/video No No

Device dependent, low

accuracy in low illumination
96%

Chen et al. [15] 2D photo/video No Requires moving the phone Slow response 97%

Table 1: Summary of existing face liveness detection methods

Figure 17: Top row shows images chosen as background for
the light passcode. Bottom row shows what the passcode
looks like with an image as background

image for the passcode instead of the gray background. For this

purpose, we selected a total of 5 background images (shown in

Figure 17(top)). Figure 17 also shows an example of what the pass-

code frames look like with an image background across time. We

performed experiments with 10 users where each user performed

10 trials in daylight setting using the 5 background images. Our

system achieves an EER of 1.15% against the spoofing attacks. A

photo attack is detected with an accuracy of 99.4% when the true

accept rate for humans is 97%. These results show that FaceRevelio’s
process can be made more user friendly by using images of the

user’s choice as a base for the passcode.

(7) What is the power consumption of FaceRevelio?
We additionally investigated the power consumption of FaceRev-

elio by performing several trials of our system and recorded the

battery consumption. During these measurements, the brightness

level of the screen was set to maximum level by FaceRevelio during
operation. A single use of our system consumes 1.08mAh on aver-

age. Assuming that users typically unlock their smartphones about

100 times a day [5] and the average battery size of modern flagship

smartphones is 3500mAh [3], FaceRevelio will consume an average

of only 3.4% of the total battery per day.

(8)Where does FaceRevelio stand compared to existing face
liveness detection methods?

Table 1 gives an overview of the existing methods for face live-

ness detection on smartphones. It shows the type of attacks these

methods can defend against and if they require any extra hardware

or user interaction for doing so. Among the commercial solutions,

Samsung’s face recognition is vulnerable to simple 2D photo attacks

and needs to be combined with other authentication methods for

security [4]. Apple’s FaceID [1] is the most secure method against

2D and 3D spoofing attacks, owing to the TrueDepth camera [1]

system. Since FaceID is an authentication system, it generates 3D

reconstruction of the face which is capable of capturing the sub-

tle differences in the facial features of different humans. However,

among liveness detection methods that do not rely on any extra spe-

cialized hardware [16, 29, 30, 37], FaceRevelio achieves the highest
accuracy in detecting 2D photo and video attacks with the fastest

response time of 1s . Tang et al. [37] use a challenge-response pro-
tocol to achieve a high detection accuracy, however, their approach

relies on the user to make facial expressions as instructed and takes

6s or more (depending on the number of video frames collected)

to perform well. In contrast, FaceRevelio detects the spoofing at-

tempts in 1s , without requiring any user interaction, increasing

its overall usability. Another important comparison metric is the

performance variation in different lighting conditions. For methods

like [16, 33, 42], the performance mentioned in table 1 is achieved

under controlled lighting conditions and deteriorates in dark en-

vironments. EchoFace [14] achieves a good accuracy by using an

acoustic sensor based approach however their sound frequency

is within human audible range, (owing to smartphones’ speaker

limitation [28]) making it less user friendly.

7 RELATEDWORK
Several software-based face liveness detection techniques have

been proposed in the literature. These depend on features and in-

formation extracted from face images captured without additional

hardware. Texture-based methods detect the difference in texture

between real face and photographs/screens. In [36], local binary

patterns were used to detect the difference in local information of a

real face and a 2D image using binary classification. Another tech-

nique, [23], measures the diffusion speed of the environmental light

which helps distinguish a real face. [16] operates by comparing
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photoplethysmograms independently extracted from the face and

fingertip videos captured by front and back cameras. Similarly [31]

uses a combination of rPPG and texture features for spoof detection.

These works do not perform well in poor lighting conditions and

are affected by the phone camera limitations. Some works [33, 41],

make use of the degraded image quality of attack photos or videos.

However, with modern cameras and editing softwares, an adver-

sary can easily obtain high quality images and videos to conduct

an attack. In contrast to these approaches, FaceRevelio works in

different lighting conditions and is not dependent on the quality of

the videos captured.

Other techniques use the involuntary human actions such as eye

blinking [21] or lips movement [26] to detect spoofing, but these

techniques fail against video replay attacks. Challenge-response

protocols require the user to respond to a random challenge, such

as blinking, face expression, head gesture, etc [32]. These systems

are limited by their unconstrained response time and are still prone

to replay attacks. Another work, [37], used a time constrained

challenge-response technique that shows different colors on the

screen and detects the difference in the time of reflection between

a real face and an attack. This work differs from FaceRevelio as they
utilize the random challenge on the screen to perform a timing

verification whereas we use the screen lighting to reconstruct the

3D surface of the face. Also, [37] requires the user to make a face

expression to defend against static attacks. Some works like [15, 29]

require the user to move the phone in front of their face and analyze

the consistency between the motion sensors’ data and the recorded

video to detect liveness. These approaches require some form of

user interaction unlike our system which operates independently

of the user.

Some hardware-based techniques require extra hardware or dif-

ferent sensors to detect more features of the human face structure.

FaceID was introduced by Apple in the iPhone X to provide secure

3D face authentication using a depth sensor [1]. However, the extra

hardware consumes screen space and requires additional cost. [42]

developed an authentication system that uses the microphone with

the front camera to capture the 3D features of the face. However,

this technique does not work well in poor lighting and depends on

deep learning which requires large training datasets. Similarly, [14]

uses acoustic sensors to detect the 3D facial structure. Both these

techniques play audible sound for detection, which makes their sys-

tem less user friendly. Some other techniques use thermal camera

[17], 3D-camera or multiple 2D-cameras [27]. Again, these tech-

niques suffer from the setup cost for these extra devices.

8 DISCUSSION
FaceRevelio depends on light emitted from the screen, therefore it is

sensitive to rapid changes in the ambient lighting like when a user

is in a moving car. The accuracy of our system would be affected in

such scenarios. This requires investigating other camera features

to recognize the small light changes produced by our passcode in

the presence of strong, changing ambient light.

Recently, some advanced machine learning based attacks [12, 35]

have been successful in spoofing state-of-the-art face recognition

systems. However, FaceRevelio can defend against these attacks

because the random light passcode changes with every use of our

system and does not have any relation to the passcodes used pre-

viously. Hence, learning a machine learning model to guess the

password on the fly and replaying it to the system is not possible.

Here, we want to admit that as FaceRevelio performs liveness de-

tection by exploiting the differences in the 3D layout of the human

face and 2D photos/videos, it is limited in defending against non-2D

object with curvature features bearing similarity to the human face.

Similarly, FaceRevelio may be spoofed by a sophisticated 3D printed

mask of the subject mimicking the skin reflection properties and

the depth features of the human face. However, these attacks are

costly and difficult to execute given the nature of the 3D printing

materials commonly available. Keeping this in mind, FaceRevelio
focused on defending and raising the bar against the commonly

existing 2D spoofing attacks. In future, we plan on investigating

how our reconstruction algorithm and Siamese network can be

adapted to defend against 3D attacks as well.

In our system, we divided the phone screen into four quarters for

displaying four random patterns in the passcode. These passcodes

helped us achieve a good accuracy in detecting replay attacks. How-

ever, we can further push the randomness involved in our passcodes

by dividing the screen into smaller regions or using combination

of different shapes to display the light patterns. We also plan to

increase the system usability by using more sophisticated light

patterns, such as a picture of blinking stars or animated waterfall.

FaceRevelio provides a promising solid idea for secure liveness

detection without any extra hardware. Our technique can be in-

tegrated with existing 2D face recognition technologies on smart-

phones. Detecting the 3D surface of the face through our system

before face recognition would help them in identifying spoofing

attacks at an early stage. This will improve the overall accuracy

of these state-of-the-art technologies. Apart from this, since our

system reconstructs the 3D surface of the face, it has the potential

to be used for 3D face authentication. To distinguish the faces of

different human beings, our reconstruction algorithm will need be

modified to retain the tiny details in the facial features during the

mesh warping step of the surface normal computation. We leave

this to a future work of our system.

9 CONCLUSION
This paper proposes a secure liveness detection system, FaceRevelio,
that uses a single smartphone camera with no extra hardware. Fac-
eRevelio uses the smartphone screen to illuminate the human face

from various directions via a random light passcode. The reflections

of these light patterns from the face are recorded to construct the

3D surface of the face. This is used to detect if the authentication

subject is a human or not. FaceRevelio achieves a mean EER 1.4%

and 0.15% against photo and video replaying attacks, respectively.
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