One Key to Rule Them All: Secure Group Pairing for Heterogeneous IoT Devices

Habiba Farrukh®, Muslum Ozgur Ozmen", Faik Kerem Ors, and Z. Berkay Celik
Purdue University
{hfarrukh, mozmen, fors, zcelik} @purdue.edu

Abstract—Pairing schemes establish cryptographic keys to
secure communication among IoT devices. Existing pairing
approaches that rely on trusted central entities, human inter-
action, or shared homogeneous context are prone to a single
point of failure, have limited usability, and require additional
sensors. Recent work has explored event timings observed by
devices with heterogeneous sensing modalities as proof of co-
presence for decentralized pairing. Yet, this approach incurs
high pairing time, cannot pair sensors that sense continuous
physical quantities and does not support group pairing, mak-
ing it infeasible for many IoT deployments. In this paper,
we design and develop IOTCUPID, a secure group pairing
system for IoT devices with heterogeneous sensing modalities,
without requiring active user involvement. IOT CUPID operates
in three phases: (a) detecting events sensed by both instant
and continuous sensors with a novel window-based derivation
technique, (b) grouping the events through a fuzzy clustering
algorithm to extract inter-event timings, and (c) establishing
group keys among devices with identical inter-event timings
through a partitioned group password-authenticated key ex-
change scheme. We evaluate IOTCUPID in smart home and
office environments with 11 heterogeneous devices and show
that it effectively pairs all devices with only 2 group keys with
a minimal pairing overhead.

1. Introduction

Internet of Things (IoT) devices need secure wireless
communication channels to protect the confidentiality and
integrity of the data they exchange (e.g., sensor measure-
ments, actuator states). This protection is critical to prevent
various attacks (e.g., man-in-the-middle (MitM) [1], [2] and
protocol manipulation [3], [4]), provide user privacy and
ensure the trustworthiness of IoT systems [5], [6]. Therefore,
IoT devices require a pairing mechanism, which establishes
shared cryptographic keys between devices to enable secure
wireless communication among them.

Traditional pairing methods employ a centralized ap-
proach where a user pairs each device with a trusted IoT
gateway/hub through an external helper device (e.g., user
typing a password on their smartphone to pair a smart
light with the IoT hub). Yet, central gateways/hubs (a) are
prone to temporary or permanent failures due to operational

*. Habiba Farrukh and Muslum Ozgur Ozmen contributed equally.

malfunctions [7], and (b) can be compromised due to their
vulnerabilities [4], [8]. In such cases, devices need a secure
mechanism for directly communicating with each other.

To illustrate, consider a smart home that turns on the
lights and unlocks the door when smoke is detected for fire
safety. If the hub is not present or experiences a failure, these
devices cannot communicate with each other, resulting in
severe consequences, e.g., residents being trapped in a fire.

Consequently, IoT platforms have recently been push-
ing towards decentralized IoT networking protocols
(e.g., OpenThread [9]). Such decentralized protocols have
applications in smart homes and industrial automation due to
their reliability (always-on), scalability (easy device addition),
and adaptability (supporting devices from different vendors).
Past efforts at decentralized secure IoT device pairing have
explored two primary approaches: (1) human-in-the-loop-
based and (2) context-based pairing.

In human-in-the-loop-based approaches, a user needs to
be physically involved to facilitate the pairing process. A
line of work requires users to contact devices by exploiting
the fact that the movement pattern is correlated in multiple
devices [10], [11]. For instance, a user with a wristband
touches a device [12] or shakes two devices at the same time
for pairing [13]. Another line of work relies on the user to
enter passwords, read QR codes, or press buttons [14]. For
example, OpenThread requires a user to scan the QR code
of each device with a mobile phone [9]. These approaches,
however, require human involvement that affects usability
and scalability with an increasing number of devices.

To address these limitations, there is a growing interest
in context-based pairing schemes [1]. In this, co-located
sensors establish shared keys based on the entropy extracted
when they observe common events. Yet, these approaches are
limited to pairing devices only equipped with homogeneous
sensors that sense identical sensing modalities [5], [15], [16],
[17]. For instance, to pair a power meter with a microphone,
another microphone must be embedded into the power meter
so that both devices capture a common audio context.

Recent work has proposed capturing event timings among
heterogeneous devices as evidence for device co-presence
to derive secure keys [6]. While this approach supports
heterogeneous sensing types without human intervention, it
suffers from four fundamental limitations: (1) takes several
hours or a few days for pairing, (2) is limited to sensors
that only sense instant physical quantities (e.g., cannot pair
widely deployed temperature and humidity sensors), (3) entire

pairing process is impaired by concurrent events (e.g., when
the sound from door lock and coffee machine overlaps), and
(4) can pair solely two sensors at a time. These limit its
usability, make it infeasible for pairing diverse device types
and ultimately fail in offering promise for adoption to a
wide-variety of IoT deployments in practice.

In this paper, we design and develop IO0TCuPID, a
secure group pairing system for IoT deployments with
heterogeneous sensing modalities. IoTCUPID complements
trusted gateways in IoT deployments when they experience
operation failures or are compromised and enables secure
communication among devices. It operates both on instantly
and continuously influenced sensors, supports concurrent
events for context extraction, and establishes a secure shared
group key among devices that sense the same events.

IO0TCuPID first obtains the sensor measurements corre-
sponding to events sensed by each device. It implements
a feature processing technique through a window-based
derivation algorithm to support sensors that measure instant
(e.g., sound) and continuous physical quantities (e.g., temper-
ature and humidity). It then derives temporal sensor features
from detected events, extends a fuzzy clustering algorithm
to group concurrent and independent events into different
types, and obtains inter-event timings (time interval between
consecutive events) for each event type. Lastly, it uses the
inter-event timings as evidence to authenticate the devices
and establishes a shared group key among all devices that
sense the same events. IOTCUPID’s group key establishment
protocol enables dynamic group generation and is resilient to
MitM, offline brute-force and denial of key exchange attacks.
In contrast to previous approaches, IOTCUPID provides a fast,
practical, and secure group pairing scheme that automates
pairing diverse device types with no active user involvement
and a minimal computational and storage cost.

We present two studies evaluating IoTCupID’s effective-
ness. In a first study, we conducted experiments in a smart
home with 4 sensors and 4 event sources while two residents
were conducting their routine activities. We also deployed
devices outside the home to evaluate IoTCuPID’s resilience
against attacker devices that aim to pair with legitimate
devices. To demonstrate IoTCuPID’s practicality in different
environmental conditions, in a second study, we evaluated
IoTCuPID on a dataset [18], [19] collected in an office
environment with multiple devices and event sources while
four people were conducting their everyday work. IoTCUPID
correctly detected events with an average precision and recall
rate of 95.8% and 83%, and successfully paired all devices
with only four equivalent inter-event timings. We show that
the attacker devices cannot pair with legitimate devices using
IoTCuPID. These studies demonstrate IOTCUPID establishes
group keys without a significant overhead. It takes 39
milliseconds on average to derive group keys among 20
devices with 4 event sources, and the overhead increases
linearly with an increasing number of event sources and
devices. In summary, we make the following contributions:

¢ We introduce I0TCuPID, a secure and practical group
pairing system for heterogeneous sensors. I0OTCUPID
leverages inter-event timings of commonly sensed events

—— door-open

~—— door-close & coffee-machine-on
door-close

~— coffee-machine-on

heater-on

n B 5
i
: » :

-

Sound

: Time

i concurrent events :

Temperature

-~ continuous
- .
impact
Time

Power

. 4 . : Time
Figure 1: An illustration of how common events sensed by
different sensors can be used for device pairing.

to pair devices with diverse sensing modalities in a short
duration with minimal computation and storage cost.

o We design a dynamic group key establishment protocol
that extends a partitioned group password-authenticated
key exchange scheme with provable security.

o We perform two studies in a smart home and smart office
to show I0TCuPID’s effectiveness and performance in
pairing multiple devices with diverse modalities.

2. Problem Statement

Trusted gateways may not always be available in IoT
deployments. In such cases, secure communication channels
are constructed through decentralized pairing systems that
authenticate the devices and establish cryptographic keys
for device-to-device communication. Most of these systems
require human involvement (e.g., simultaneously shaking two
devices) to pair the devices. However, such solutions have
limited usability and are infeasible for IoT deployments with
the increasing number of devices. Therefore, recent efforts
have explored context-based pairing to provide secure com-
munication channels [5], [15], [16], [17]. These approaches,
however, can only pair devices equipped with homogeneous
sensors that sense identical sensing modalities.

Since IoT devices are equipped with sensors with dif-
ferent capabilities and sensing modalities, our goal is to
design a secure, and practical pairing system for these
heterogeneous devices based on their shared context, without
user involvement. To illustrate, we consider an IoT deploy-
ment with three devices. Each device is equipped with one
of the following sensors: a microphone, a power meter,
and a temperature sensor. In the morning, user-A opens
the door (door-open) to go out. Meanwhile, user-B turns
on the coffee machine (coffee-machine-on). While the
coffee machine is on, user-A returns and closes the door
(door-close). User-A prepares a cup of coffee for herself
(coffee-machine-on) and turns on the heater (heater-on).

Figure 1 presents the physical influences of the described
event sequence on the sensors, where all devices perceive

TABLE 1: Commonly occurring events in IoT environments
and the sensors impacted by these events.
Event \ Sensors Impacted
air pressure, humidity, illuminance, microphone,
motion, temperature
microphone, power
air pressure, humidity, illuminance,
motion, temperature
humidity, power, temperature
illuminance, power
air pressure, humidity, microphone,
power, temperature
humidity, microphone, power, temperature
illuminance, microphone, power
humidity, microphone, power, temperature

door-open/close

coffee-machine-on/off

window-open/close

oven-on/off
light-on/off

AC-on/off

heater-on/off
TV-on/off
dryer-on/off

common events. For instance, the door-open/close events
influence the microphone and temperature sensor while the
microphone and power meter sense the coffee-machine-on
event. Similarly, heater-on influences all three sensors.
In general, commonly occurring events in typical IoT
environments are sensed by multiple devices equipped with
heterogeneous sensors [6], [18], [20], [21], [22]. Table 1
summarizes commonly occurring events and the group of
sensors impacted by these events in a typical smart home
setting. Although the devices’ measurements are not directly
comparable due to different signal characteristics and their
times may not be synchronized, these devices can leverage

the inter-event timings to verify they observed the same event.

Particularly, two or more devices can use the time interval
between the subsequent occurrences of a commonly observed
event type (e.g., coffee-machine-on events sensed by the
microphone and power meter) as a proof of co-presence and
use them as an evidence to establish a symmetric key.
Definitions. In this paper, we use the term events to refer to
instances of changes in the device states (e.g., door-open,
coffee-machine-on and heater-on). Events influence a
set of physical channels that are measured by sensors. We
use the term signals to refer to the processed sensor readings
that represent the influence of an event separated from the
background noise. Common devices in [oT environments are
influenced by multiple event types. For instance, a device
equipped by a temperature sensor may be influenced by
events of types door-open, heater-on and AC-on.

2.1. Design Requirements and Challenges

Several schemes leveraged shared homogeneous context
to securely pair IoT devices [5], [15], [16], [17], and only
a single prior work [6] explored using inter-event timings

for the secure pairing of heterogeneous sensing devices.

However, these schemes suffer from four primary problems,

which makes them impractical in many IoT environments.

We detail them below and address each with IoOTCUPID.

Short Pairing Time. Existing works use cryptographic
primitives that are vulnerable to offline brute-force attacks. In
these attacks, the attacker enumerates all possible inter-event
timings to derive the cryptographic keys. Thus, they require
many inter-event timings to provide sufficient entropy for
the shared keys to be cryptographically secure. The time
needed to derive secure keys is further increased due to

concurrent events, which cannot be used for pairing as they
create inter-event timing mismatches (Detailed below).
Pairing Continuously Influenced Sensors. Prior pairing
systems only consider sensors that are instantly influenced
by an event. Yet, in real environments, many sensors measure
continuous physical quantities (e.g., temperature and humid-
ity). We refer to such sensors as continuously influenced
sensors. For instance, in Figure 1, the heater-on event’s
sound instantly influences the microphone. However, the
temperature continuously increases over time. Unless event
detection considers gradual changes in the temperature, the
heater-on event cannot be detected and used to pair the
microphone and temperature sensor. Without considering
continuously influenced sensors, the number and types of
devices which can be paired are very limited.

Concurrent Events. Existing pairing schemes mainly eval-
uate scenarios where a device only senses a single event
per time period. However, in practical scenarios, multiple
events occur simultaneously and produce an overlapping
influence on the sensors. In Figure 1, coffee-machine-on
and door-close happen concurrently, and the microphone
measures their aggregated influence. Prior works group
concurrent events into a new separate event type. This leads
to longer pairing times since the inter-event timings for a
device sensing concurrent events will not match with another
device sensing only one of those event types. To address
this, a method to separate independent and concurrent events
into groups is needed for scalable and practical pairing.
Deriving Group Keys. In centralized IoT deployments, a
trusted hub monitors and controls the devices. However,
in decentralized IoT protocols, devices need to broadcast
their states to invoke their event-triggered automations. For
instance, a smoke-detector broadcasts the smoke-detected
event; upon receiving, the lights are turned on and the door
is unlocked for user safety. Previous decentralized pairing
schemes establish individual keys among pairs of devices.
When a device needs to broadcast a message, it individ-
ually encrypts it with all shared keys and then sends the
ciphertexts, causing linear computation, communication and
energy consumption overhead. Since IoT devices typically
have limited resources and energy constraints, this overhead
negatively impacts their performance and battery.

2.2. Threat Model

The attacker, A, aims to eavesdrop on the communication
between IoT devices and learn private information about
users. We assume that the devices are deployed within an
indoor closed physical space (e.g., smart home, smart office,
industrial control room, etc.), and controlled by a common
trusted entity (e.g., smart home owner, office occupants, etc.).
We assume that the attacker is not present within the physical
boundary of the indoor IoT environment and cannot access,
add devices or control the devices inside. We also assume
that the attacker has complete knowledge of the pairing
protocol and has access to the communication channels.

We consider A can launch the following attacks: (1)
Eavesdropping attack, A places malicious devices D4

REV:’) S:"W_, Signal Feature Fuzzy C-Means|_} [Evidence Partitioned
ata Detection Extraction Clustering Encodin; GPAKE
inter-event timings
Device A
Device A S
0 DD fa:)
- 5
on
A 2 b D @D =i
4 F4 Ei N .
Device B S £ Shared Group Key
Device B @ g m m m -
E; -E I Y
b, N B = S 7 "’
2 ’
- - I
&= s ,
p 2 ’
Device C =HRd
Device C 3 E Q é é 4
E; ‘5 ‘%
Group Key
@ Event Detection © Context Extraction Establishment

Figure 2: Overview of IoTCUPID’s architecture.

outside the IoT environment’s physical boundary to pair
them with legitimate devices. D4 may be (a) embedded
with off-the-shelf sensors with similar capabilities as the
legitimate devices, or (b) equipped with higher-end sensors
that are more powerful and expensive compared to the
legitimate devices. (2) Man-in-the-middle attack, 4 intercepts
the messages between legitimate devices and attempts to
establish keys with them. (3) Brute-force attacks, A tries
every possible evidence to derive the cryptographic keys used
by legitimate devices. A can conduct this attack in two ways.
For online attacks, A joins the key establishment process
and guesses the evidence. For offline attacks, A eavesdrops
on the communication between the legitimate devices and
attempts to crack the established key after pairing. (4) Denial
of key exchange, A participates in group key establishment
with random evidences to prevent legitimate devices from
establishing a key.

3. IoTCurIiD

3.1. System Overview

Figure 2 illustrates the three stages of I0TCuPID. [0TCuU-
PID first processes the raw time-series data collected in real-
time by both instant and continuously influenced sensors
and performs a threshold-based signal detection to separate
the sensor data corresponding to events (signals) from
background noise (@). For instance, it determines that Device
A detects five signals (a;j-as), and Device B and Device C
detect four signals (b1-bg, ci-Cy).

Second, ToTCUPID extracts distinctive time-series features
from the signals each sensor has detected. It then extends
a fuzzy clustering algorithm to group independent and
concurrent signals into different events (@). For example,
Device A creates two event clusters, E; and E,. It then groups
each detected signal into one or both of these clusters (as is
grouped into both clusters as E; and E, occur concurrently).
The clustered events are used to obtain the sequence of time
intervals between consecutive events of a given type, which
serve as evidence of the devices’ shared context.

Lastly, IoT devices use the inter-event timings to au-
thenticate each other and establish a shared group key (@).
IoTCupID encodes the inter-event timings into passwords and
extends a partitioned group password-based authenticated
key exchange scheme for a group key establishment protocol.

12 l = 1] 12 l = t]
—Even! —Even!
10 TU T
8
.
u:U 6
E
WL eyl Wi
2
0
4.27 428 429 43 4.31 427 428 429 4.3 4.31
Time (s) «10* Time (s) x10*
(a) (b)

Figure 3: Signal detection using lower (Tp) and upper (Ty)
thresholds. (a) shows short discontinuities between detected
signals aggregated by our approach in (b).

We consider the devices that sense the same event as a group.
Through this, each subset of devices that have the same inter-
event timings establishes a group key. For instance, Devices
A, B, and C derive a shared group key since they extract
matching inter-event timings through E;.

Deployment. IoTCuUPID presents a secure system for ad-hoc
connectivity among heterogeneous IoT devices without a
central gateway or IoT hub. It does not require specific user
actions to initiate the protocol or trigger events in the IoT
environment. It solely depends on the entropy extracted
from events resulting from users’ routine activities. In
IoTCupID’s key establishment protocol initiation, all devices
broadcast their public keys encrypted with the extracted inter-
event timings for establishing group keys. Given the ad-hoc
nature of the network, any device broadcasting its encrypted
public key can initiate and participate in the protocol. Thus,
I0TCuPID operates without knowing the number of devices
present in the IoT deployment.

3.2. Event Detection

IoTCuPID’s event detection operates on each sensor’s
raw time-series data. We first pre-process the sensor data for
signal smoothing and noise reduction. We then perform
threshold-based signal detection to separate the events’
impact on sensor data from noise. We adapt our approach
for both instantly and continuously influenced sensors.

3.2.1. Sensor Data Extraction and Pre-processing. To
extract signals corresponding to events, we first segment the
sensor data into multiple samples with window size, ws. Many
sensor values heavily fluctuate throughout the day (e.g., tem-
perature sensor readings depend on ambient temperature) [6],
[23]. To address this, we first normalize the sensor readings to
eliminate these fluctuations’ impact and capture the transient
changes caused by events. We then apply a smoothing filter
by computing sensor data’s exponentially weighted moving
average (EWMA) to reduce noise. We compute the sensor
data’s EWMA as S, = a % Y, + (1 — «) % Sy_1, where « is
the weight, Y, is the sensor data in window w, and S,_; is
the EWMA of the preceding window. Appendix A shows an
example of the sensor data before and after pre-processing.

3.2.2. Event Signal Detection. We design a threshold-based
approach to distinguish events’ influence on sensor readings

x10*

w
=3
N

w
S
=
&

T

Temperature (°C)
w
D

w
3]

4.2 4.4 4.6 4.8 5 42 4.4 4.6 4.8 5
Time (s) >(104 Time (s) >(104

(@) (b)
Figure 4: (a) Raw sensor data collected from a temperature
sensor. (b) Absolute of the first derivative of the temperature
data with upper and lower thresholds.

from background noise. We leverage a lower threshold, Ty, to
identify peaks in the sensor readings that distinguish events’
impact from background noise, and an upper threshold, Ty,
to remove high amplitude noise signals. We consider the
consecutive timestamps at which the sensor values exceed
T but are below Ty as a signal representing a single event.

Figure 3 (highlighted region) shows how the thresholds
determine the microphone signal corresponding to an event.
We disregard short discontinuities between the signals (Fig-
ure 3a) to ensure small fluctuations do not segment a signal
representing a single event into multiple signals. To detail,
we aggregate consecutive events into a single signal if the
duration between these signals is less than the aggregation
threshold, t,, (Figure 3b).

Detecting Continuous Physical Quantities. The event de-
tection approach described above is suitable for sensors
instantly impacted by an event since the raw sensor readings
can be directly compared to the thresholds. Yet, many sensors
measure continuous physical quantities, such as temperature,
and humidity, that may not change instantly in response to an
event. For instance, a heater-on event occurring at time t
causes a gradual increase in temperature sensor values after
a delay (At), which may vary depending on environmental
factors such as the sensor’s distance from the heater.

To illustrate, consider the raw sensor data from a temper-
ature sensor shown in Figure 4a. The sensor values gradually
increase or decrease in response to heater-on/off events.
However, the maximum (or minimum) temperature values
are sensed after a delay from the original event timestamp.
The length of this delay is different even for two events of
the same type. For example, for the two heater-on events,
Atypeater-onz 18 larger than Atpeater-on1- Additionally, the
maximum (or minimum) values recorded in response to the
two events also vary. Due to these variations, using thresholds
determined from the raw sensor data results in inaccurate
event detection and incorrect inter-event timings.

To account for the gradual changes and the varying
delay in the impact on sensor readings, IoTCUPID leverages
the rate of change in the sensor readings to detect signals
corresponding to events for continuously influenced sensors.
IoTCupID first computes the derivative of the pre-processed
sensor values in each window (w) as S, = (Sy,, — Sy,)/Ws,
where wg is the window size and wo and w,, are the first and
last sensor values in the window. IOTCUPID then applies the

[

o @ o mm

®
B R

62
RO OpNO B g Lo
T r T T T T T 1 LN AL, 0
A A A -O- ﬁ; o B O
Event Sequence JEl- = §5¢ @ il =
t,) 2

K-Means Clusters

Figure 5: Comparison of event clustering through K-Means
and Fuzzy C-Means algorithms.

Fuzzy C-Means Clusters

lower and upper thresholds (Ty and Ty) determined based on
the average derivative values for each sensor. We extract the
timestamps where the absolute value of the sensor readings’
derivatives lie within the predetermined Tp and Ty for the
sensor. Compared to the raw sensor data, the sensor data’s
derivative has clear peaks that align well with the events’
timestamps, as shown in Figure 4b.

3.3. Context Extraction

IOoTCuPID leverages inter-event timings as evidence of
a shared context among devices. To compute inter-event
timings, it first derives the temporal features of the detected
signals, performs dimensionality reduction, and clusters them
into events. It then computes the sequence of time intervals
between the start times of events of a given type.

3.3.1. Event Clustering. We cluster the detected signals
into different events to extract their inter-event timings. This
is because each device can sense multiple event types, and
the devices do not know the type of detected signals. We
use temporal features extracted from the detected signals
to cluster similar events via a fuzzy clustering algorithm,
without any prior information about the event types.

Deriving Temporal Sensor Features. [0TCUPID implements
a feature extraction and selection algorithm to extract features
representing different events. It extracts time-domain features
(F) such as min, max, mean, and median from the signals
corresponding to each event. We perform feature selection to
identify the features that enable the correct characterization
of different events. We normalize the selected features
and perform dimensionality reduction through principal
component analysis (PCA) [24] to select a subset of features,
Fuin, Which is used to differentiate event types.

Fuzzy C-Means Event Clustering. In real IoT deployments,
multiple events may occur simultaneously and produce an
overlapping signal on the devices. For instance, consider the
event sequence shown in Figure 5, where door-open and
coffee-machine-on events occur concurrently. The signal
features corresponding to such simultaneous events may
significantly differ from the same event’s occurrence in
isolation. Thus, traditional hard clustering methods such as
K-Means may cluster concurrent events into a separate type
instead of the existing types (as shown by the K-Means output
in Figure 5). This approach results in a higher mismatch in
the inter-event timings generated by two devices for a given
event type, leading to longer pairing times.

To address this, we extend fuzzy C-Means clustering [25]
to assign the detected signals into one or more appropriate
event clusters based on the extracted features. Fuzzy C-Means
partitions signal into c¢ fuzzy event clusters, where c is an
input. Each signal corresponding to an event is assigned a
degree of membership to each of the c clusters. For a given
signal (e), the degree of its membership (ue;) in cluster j
is determined by ue; = 1/ > r_, (dej/dex)?™ %, where de;
represents the Euclidean distance between the cluster j’s
centroid and signal e’s feature vector. Since a device does
not know the possible event types that may occur, IOTCUPID
employs the elbow method to identify the optimal value
of ¢ [26]. The fuzziness index, m, is the hyper-parameter
controlling the tendency of an element to belong to multiple
clusters. We detail how ¢ and m are determined in Section 4.
This process allows two events occurring simultaneously to
belong to their appropriate clusters (Figure 5 (Right)).

3.3.2. Context Evidence Generation. [oTCUPID generates
inter-event timings, I, for each device after clustering the
detected signals into different event types. Each device d
extracts and concatenates the time intervals between the
start times of event occurrences (e, ..., e,) in cluster k to
generate inter-event timings, ix. IOTCUPID uses the inter-
event timings for all events sensed by a device (I) as evidence
in our group key establishment protocol (Section 3.4).

Using inter-event timings as evidence to bootstrap key
establishment has significant advantages for pairing hetero-
geneous devices. First, two devices detecting the same event
roughly record the same inter-event timings even if their
raw signals have different characteristics (e.g., door-close
events sensed by a microphone and gyroscope). Second, inter-
event timings eliminate the need for a global clock or time
synchronization. Even if an event’s timestamps observed
by two devices are not synchronized (e.g., heater-on is
instantly sensed by a sound sensor but gradually sensed
by a temperature sensor with a delay), the time intervals
between consecutive events of the same type are still similar.
Third, inter-event timings eliminate the impact of changes in
the duration of detected events, e.g., a coffee-machine-on
event’s duration depends on the number of cups.

3.4. Establishing Group Keys from Evidences

After devices extract inter-event timings, they use the
timings as evidence to authenticate each other and establish
group keys. A group key is shared between the devices that
sense the same event type, and all devices in the group
can securely communicate using a single key. Group keys
have unique advantages over deriving individual keys among
each device pair. First, devices must store an individual
key for each device they pair with. Second, when a device
communicates with multiple devices (e.g., broadcasts a mes-
sage), it must encrypt and authenticate the message with all
individual keys. Due to the storage, computation, and energy
constraints of IoT devices, linear storage, communication,
and computation overhead from individual keys significantly
deteriorates the devices’ performance and battery.

3.4.1. Design Space Exploration. Deriving group keys us-
ing inter-event timings from multiple events in a dynamic IoT
deployment introduces several challenges. First, the groups
must be generated dynamically based on the devices that
sense the same event. Second, the group key establishment
protocol must support device addition and removal. When
a device is added, it must pair with the existing devices
for secure communication, and when a device is removed,
its keys must be revoked since an adversary can capture it
(e.g., through reselling or returning [4], [27]) and physically
extract the keys. Unfortunately, prior works cannot be easily
extended to address these challenges.

Group Diffie-Hellman. Group keys can be generated using
the secure communication channels from the individual keys
derived through a standard pairing protocol. This means the
devices run an additional Group Diffie-Hellman (GDH) [28]
protocol to derive group keys, increasing the pairing time.
Here, the group key establishment protocol must be run over
the secure communication channels to prevent MitM attacks.
Since group key establishment protocols require multiple
broadcasting rounds, using the secure channels between
each pair of devices further increases the communication
and computation overhead of the group key establishment.
Additionally, when a device is added to the IoT environment,
it must first individually pair with other devices to be authen-
ticated and then participate in the group key establishment.

Fuzzy Commitment. Several approaches use fuzzy com-
mitment schemes [29], [30] to generate individual keys.
These schemes are built on error-correcting codes and
enable verifying two evidences even when they have small
differences (e.g., Hamming distance less than a threshold).
These schemes can be extended to derive group keys where
each device broadcasts its commitment, and the ones with
similar evidences derive the same keys. Yet, approaches only
built on fuzzy commitment are vulnerable to offline brute-
force key guessing attacks [12]. In this attack, the adversary
collects the network traffic and tries all evidences until they
find the one that can decrypt the network traffic.

There are two approaches to protect against these attacks.
First, a large number of evidences (i.e., inter-event timings)
can be used to derive the keys. Yet, this approach sacrifices
efficiency since it may take a long time to derive a large
number of evidences. Second, Password-Authenticated Key
Exchange (PAKE) schemes have been proposed to prevent
offline brute-force attacks. However, extending PAKE into
group settings is non-trivial, as discussed below.

Group PAKE (GPAKE). GPAKE enables multiple devices
sharing the same evidence to derive group keys [31], [32].
However, the passwords of all devices that participate in the
key agreement must be the same because these schemes abort
without establishing a shared key even if a single password
is different. The adversary can leverage this limitation by
joining the key agreement protocol with arbitrary evidences
to deny legitimate devices from deriving shared keys. We
refer to this attack as Denial of Key Exchange.

TABLE 2: Our group key establishment protocol.

Device 1 (d;)

Device 2 (ds)

Device N (dy)

{i14,-.-ic;4,} = CONTEXT_EXTRACTION(d;)

Step 1: Evidence Extraction
{i14, .. 1ic,a,} = CONTEXT_EXTRACTION(d;)

{itgy..-icya) = CONTEXT_EXTRACTION(dy)

{PW1ia, - PWe,a,) = [{it,g, - dca, /W] {pwig, -

Step 2: Encoding
PVt = [{i1a, - icya,} /W

{PV1,a0 - PVea) = Hivay - denant/W)

Choose random {xi g4, ...Xc, q, | & Zy
Xiq, ¢ Xi,q, -Pmod q, Yig, ¢ Encpy, , (Xi4,)
Broadcast (di,Y; q,), where 1 € {1,...,¢c1}

Xj,q; ¢ Decpy, ,, (Y5.4,), 1£(Xj,4, € E(Fy)) :

sid; ja, = {d1,Yiq,,d5, Yy,a,}

ski ja, ¢ H(d1,d5,Xiq,,X5.4,,%1,9, - Xj,0, mod q)
$

Tig < Zp @154, ¢ Encey, , (Ti,9,)

Broadcast (dy,sid; ja,, Qi j,a,)

1f(Yi,q, € sidija;) t Tija ¢ Decsy, j, (Qij4;)
t
key; < > i_q(Tija)

00060200000 © O

key; < z;:l(ri-,j:dj)

Step 3: Partitioned GPAKE

Determine the public parameters, two primes p and q, a finite field Fq and a group Z;. E(Fq) is an elliptic curve, and P € E(Fy) is its generator.
Choose random {x14, . .. Xc, 4, } & Zp

Xia, ¢ X0, -Pmod q, Vi g, < Encyy, , (Xig,)

Broadcast (da,Y; q,), where i € {1,...,co}
For every received message (dj, Y q,), where j € {1,...,N}:

Xj,q, ¢ Decpy, ,, (Y5,4,)s 1£(Xj,4, € E(Fy)) :

sid; ja, = {d2, Yia,,dj, Y5,)

sk ja, < H(d2,dj, % ;X545 Xi,0, - Xj,a, mOd Q)

Tig, & Zp, Qi 5,4, < Encex, , ,, (ri,9,)

Broadcast (da, sid; j4,, Qi 5,9,)
For every received message (dj, sid; ja,, 1 j.4,), Where i € {1,..., chand je{1,... ,N}:
if(Yia, € sidija,): Tiga, Decsy, ; ., (@i,5.4,)

Choose random {x1 g4, . .. Xcy,a, } & L

Xiay ¢ Xiq, -Pmod q, Yi g < Encyy, (X1,a,)
Broadcast (dy, Y; q,), where i € {1,...,cy}

Xj,a; ¢ Decpu, , (Yy.q5), 1£(Xy,q, € E(Fg)) :

sid; ja, = {dw, Yiay,dj, Yja,}

sk ja, < H(dw,dj,Xi X5, X1,0, - Xj,a, m0d Q)
Tig, & Zp, @ 3,0, ¢ Encey, ;, (i)

Broadcast (dy. sid; ja,, Qi,5,4,)

if(Yia, € sidiAj.dJ) DT, & Decskl’l_dw(ai.j_dj)
key; Z;:1(ri,j,d3)

TABLE 3: Comparison of group key exchange approaches.

Group Key | Dynamic Group
Exchange Protocol Generation

Resilience to Denial
of Key Exchange

Resilience to

Efficiency Offline Attacks

Group DH X X v v

Fuzzy Commitment-based v X X v
Group PAKE X v v X

Our Protocol v v v v

3.4.2. Our Group Key Establishment Protocol. Table 2
shows our group key establishment protocol, which offers
dynamic group generation with computational efficiency,
device addition/removal, and resilience to offline brute-force
and denial of key exchange attacks. We extend a partitioned
GPAKE scheme [33] to build our protocol. Particularly, we
include evidence extraction and encoding steps to first derive
inter-event timings and then encode them into passwords to
address their deviations. The devices then use the passwords
to run the partitioned GPAKE scheme such that each subset
of devices sensing the same events derives a group key. Here,
we implement the partitioned GPAKE scheme over an elliptic
curve to offer compact key sizes and fast computations.
Lastly, we introduce a re-initiation-based key management
scheme to support device additions and removals. Table 3
shows our protocol’s advantages over the alternatives.

Evidence Extraction. Each device first extracts inter-event
timings as evidence of co-location (@). We represent the
evidences as {iy,...,i.}, where c is the number of event
types the device senses. For each event type, the devices
can concatenate multiple inter-event timings to increase the
entropy of the evidence. Our protocol requires 32-bit entropy
in its evidences, whereas the protocols based only on fuzzy
commitment (e.g., Perceptio’s key establishment [6]) need
128-bit entropy that requires a larger number of inter-event
timings. This is because our protocol is resilient to offline
brute-force attacks, where an adversary who guesses the
password correctly after the group keys are established cannot
extract the keys. We further elaborate on each inter-event
timing’s entropy and required number of timings in Section 5.
Encoding. Slight deviations in the inter-event timings may
occur since devices may have different sampling rates for
their measurements. For instance, a device with a 10 Hz rate

collects a sensor measurement every 0.1 seconds, whereas a
device with 1 Hz rate collects every second. This leads the
first device to compute an inter-event timing of 24.2 whereas
the second device computes it as 24. Yet, the passwords used
in the partitioned GPAKE must be identical for the devices
to pair. To address this, we use a quantization window (W)
to round down the inter-event timings while deriving the
passwords (@). Here, the quantization window introduces
a trade-off between efficiency and the password’s entropy.
With a larger W, more devices have matching passwords, and
with a smaller W, the passwords have higher entropy.

Partitioned GPAKE. We extend a partitioned GPAKE
scheme with provable key secrecy and password privacy [33].
In this, a probabilistic polynomial time adversary who does
not know the passwords cannot extract keys or passwords by
eavesdropping or MitM attacks (See Appendix B for proof).

We implement the partitioned GPAKE scheme on an
elliptic curve (EC). The devices first determine the public
EC parameters (@). Each device then generates a unique
private and public key pair for each event type it senses
and encrypts the public keys with its passwords (@-@). The
devices broadcast the encrypted public keys with their device
identifiers (@). Only the devices with the same password
can decrypt the messages, preventing an adversary from
conducting a MitM attack.

After a device receives the encrypted public keys (@),
it tries to decrypt them using all of its passwords. If one
matches with the password the public key was encrypted with,
the device derives a valid public key (@). The device then
generates session IDs using the received IDs and public keys
(@), and derives intermediate two-party elliptic curve Diffie-
Hellman (ECDH) keys (@). It generates random values for
each event type, encrypts them using the intermediate keys,
and broadcasts along with its ID and the session ID ({)-@®).

Upon receiving a message, the device checks whether
its ID is in the session ID of the received message. If it
is, the device decrypts the message with its intermediate
key to derive the random value of the other device ((®-@).
After collecting all such random values, the device adds

them to derive the group keys (@). Since random values are
uniformly sampled from Z, the group keys are random and
secure. Yet, if the devices do not have a reliable source of
randomness, they can use a key derivation function instead of
addition to generate group keys. At the end of the protocol,
each device derives a separate shared group key with the
other devices that can sense the same event type.

Key Management. In IoT environments, device additions
and removals are common. Yet, an added device cannot
securely communicate with other devices without establishing
keys with them, and an adversary may leverage the removed
devices to physically extract keys. Therefore, a key man-
agement scheme is required to support added and removed
devices. Prior schemes for sensor networks, however, require
a trusted entity to assign keys to devices [34], [35], [36],
which is infeasible for IoT devices from different vendors.
To address this problem, we integrate a re-initiation-
based key management strategy. First, the added devices
re-initiate IOTCUPID and extract inter-event timings to prove
their legitimacy to the existing devices. Thus, when [oTCUPID
is re-initiated, the existing devices also start extracting inter-
event timings to pair with the newly added devices. Yet, an
adversary can abuse this and attempt a denial of service attack
by initiating the protocol unnecessarily. Such attacks are easy
to detect since the adversary cannot prove its legitimacy and
pair with the existing devices. When an adversarial pairing
attempt is detected, the devices notify the user and we provide
a waiting period to re-initiate the protocol. This period offers
a trade-off between time to re-initiate the protocol for benign
devices and the security against denial of service attacks.
Second, the removed devices can no longer derive correct
inter-event timings. We integrate a periodic liveness check
to detect if a device is removed and initiate IOTCUPID to
derive new keys after a device fails the liveness check.

Group-to-Group Communication. Devices may need to
communicate with other devices in the same environment
that they do not share a common event type. In such cases,
they can leverage intermediary devices from their groups
for communication. For instance, we consider a case where
devices d,, dy, d. share a key, and devices dy,, d.,dq share a
key. When d, needs to communicate with dq, it can leverage
dy, or d. as an intermediary device for secure communication.

Attack Resiliency. Our protocol offers resiliency to MitM
attacks, offline brute-force password enumeration, and denial
of key exchange. First, the adversary can try to conduct a
MitM attack by intercepting a legitimate device’s messages
and establishing keys with other devices. Yet, as legitimate
devices encrypt their public keys with passwords (@),
the adversary cannot decrypt them to join the protocol.
Thus, the passwords (i.e., inter-event timings) provide the
authentication necessary to protect against MitM attacks.
Second, the adversary can enumerate all possible inter-
event timings to find the password used. However, the
adversary still cannot extract the group keys due to the
online ECDH session in the partitioned GPAKE (@). Partic-
ularly, since the probability that the adversary can guess the
password is very low (e.g., 1/232), the adversary’s attack can

be successful only after the key agreement is completed. If
an adversary recovers the password after keys are established,
the adversary can decrypt the devices’ broadcasted public
keys. Yet, the adversary cannot use them to derive the private
keys or group keys due to the hardness of the computational
elliptic curve Diffie-Hellmann problem [37].

Lastly, an adversary can enter the protocol with random
passwords to disrupt pairing. Here, the legitimate devices
cannot decrypt the adversary’s public keys and thus would
ignore the adversary’s keys while deriving their group keys.

4. Implementation

Event Detection. We implement IoTCUPID’s event detection
in Python 3.9.12. IoTCupID’s event detection module uses
lower and upper thresholds for sensors to detect events. Prior
pairing schemes relying on event detection for pairing assume
that these thresholds are built-in to the sensors by device
manufacturers or manually configured [6]. However, in the
case that such thresholds are not available (as for the devices
in our experiments), we design an approach for threshold
identification, which requires minimal sensor data without
any information about the event types.

Our approach begins by separating the ambient noise
from the event signals from the sensor data. We first extract
the signal data in the interval [ts — At,,te + At,] for all
events, where ts and t. are event start and end timestamps,
and consider the rest of sensor data as noise. From the sensor
signal values corresponding to an event, we consider the
values between intervals [ts,ts + Aty] and [te — Aty, te)
as event start and end signals. Here, we empirically determine
At, and At, from a specific event type’s average duration.
We determine the frequency distribution of the signal values
for noise and event samples separately by assigning them to
equally sized bins. We then select the bin with the highest and
lowest frequency for the event and noise samples, respectively.
We set the selected bin’s maximum and minimum values
as the upper (Ty) and lower (Tp) thresholds. This approach
allows I0TCuPID to determine event detection thresholds for
both instantly and continuously influenced sensors.

To determine the optimal value for the event detection
window size (ws) and aggregation threshold (t,), we perform
a grid search between 1 sec to 5 mins and choose the ones
that give the highest event detection accuracy.

Context Extraction. We use the MinimalFCParameters
class of tsfresh [38] package in Python to extract common
time-domain features. We extend the Scikit-Fuzzy [39]
package to implement the fuzzy C-Means clustering. To
determine the optimal number of clusters (c), we employ
elbow method [26], average Silhouette coefficient [40], and
gap statistic [41]. We observe the optimal number of clusters
is similar using these methods and select the elbow method.
Since IoTCuPID does not assume any prior information about
the type of events occurring in the environment, we need
to identify the fuzziness index (m) to accurately separate
independent and concurrent events. For this, we perform a
grid search to select the optimal value for the fuzziness index

Sensors
Sensors _ @ sound 1

OO]| @souns Sound 2
@ | @ iiuminance
® Temperature
@ Humidity

© llluminance
o Event Sources

O Gyroscope

@ Door
7 || ® Light Bulb
[© Coffee Machine
@ Radiator

or
Light Bulb

® Coffee Machine
®) Radiator

@ (b)
Figure 6: IoT deployments in (a) a smart home and (b) office.

(m) based on the variance in the distances between cluster
centroids and event feature vectors.

Group Key Establishment. We implement partitioned
GPAKE on the FourQ elliptic curve [42], which offers 128-
bit security with fast computations. We use blake2 [43] as
the hash function and ChaCha-Poly [44] as the authenti-
cated encryption due to their efficiency. We leverage the
portable libraries of FourQ [45], blake2 [46] and ChaCha-
Poly [47] to implement our protocol in C. We implement
the communication rounds with the zeromq library [48].

5. Evaluation

We perform two studies to evaluate IOTCUPID in two
different IoT environments, a smart home and smart office.

In the first study, we conduct experiments with 4 sensors
and 4 event sources to evaluate [oTCUPID’s effectiveness in
pairing devices inside a home and its security against attacks
launched from outside the environment. In the second study,
we evaluate IOTCuUPID on a dataset [18], [19] collected in an
office with multiple sensors and event sources to demonstrate
IoTCuPID’s practicality in different environmental conditions.
Our studies show I0TCuUPID effectively pairs all devices in
the smart home and office via shared group keys using only
four equivalent inter-event timings extracted from 13 or fewer
events detected by each device. We present our IoTCUPID
analysis results by focusing on several research questions:

RQ1 What is the accuracy of IoOTCUPID in event detection?

RQ2 What is the impact of sensors’ locations on IOTCUPID’s
event detection accuracy?

RQ3 What is the time required to achieve sufficient entropy
for our group key establishment protocol?

RQ4 How effective is [oTCUPID in establishing group keys?
RQS5 How resilient is IoTCuUPID against adversarial sensors?
RQ6 What is IoTCuPID’s performance overhead?

RQ7 How does IoTCuPID perform against other schemes?

Evaluation Setup. Figure 6a shows the placement of the 4
event sources and 4 sensors in the smart home. The deployed
sensor types are similar to commonly found sensors in smart
homes. The event sources include the smart home’s interior
door, a ceiling light, an electric drip coffee machine, and
a portable heater. We collect sensor traces over three days
during which events are sporadically triggered by the two
occupants (authors) while conducting their daily activities
(e.g., walking, cooking, cleaning, etc.). We contacted our
university’s IRB office and got advised that IRB approval is
not required as we do not collect any sensitive information.

TABLE 4: Events detected by sensors in IoT environments.
Events' | Sound [Illum. | Gyroscope | Temp. | Humidity | Pow. meter |

Door-open/close | v v v v v X
Coffee-machine-on | v X X X X v
Light-on/off X v X X X X
Radiator-on/off | X X X v v X

t The smart home includes a BMP180 temperature sensor, DHT11 humidity sensor,
photoresistive illuminance sensor and an iPhone XR microphone. The smart office
includes two USB microphones, a TSL2560 illuminance sensor, an ST Micro LSM9DS1
gyroscope, a BMP280 temperature sensor and a BME680 humidity sensor. There are
two microphones in the office and they detect the same events.

TABLE 5: Smart home event detection results.

Event Sources [Sensors [Precision [Recall
® Sound 1.0 1.0
® Tlluminance 1.0 1.0
© door-open/close ® Temperature 1.0 0.97
® Humidity 0.9 1.0
@ light-on/off ® Tlluminance 1.0 1.0
@ coffee-machine-on ® Sound 1.0 1.0
. ® Temperature 1.0 1.0
@ radiator-on/oft © Humidity 1.0 1.0

For the second environment, we use 4 event sources and 7
sensors, as shown in Figure 6b. The sensor data is measured
over three days while four people are using the office for
their everyday work. The door, light, and coffee events are
triggered during the office occupants’ routine activities, while
the radiator events are triggered automatically.

We run IoTCuPID on a Raspberry Pi 4 with ARM Cortex-
AT72 processor and 2 GB RAM.

5.1. Event Detection Performance

We evaluate each sensor’s performance in distinguishing
the events’ physical influences from background noise. With
a higher event detection accuracy, more sensors can derive
similar inter-event timings in a shorter duration and establish
group keys. Table 4 presents the events detected in the
two environments. For instance, door-open/close events
are detected by all devices except the power meter, and
light-on/off events are detected by the illuminance sensor.

We present the event detection accuracy for each sensor
type in terms of precision and recall. The precision represents
the ratio of the number of detected events whose start times
accurately match the ground truth event start times. The recall
is the ratio of the number of correctly detected events to the
number of events occurred. We only use the events’ ground
truth timestamps in the first hour of data collection from
the smart office for identifying event thresholds and exclude
these events from our evaluation. We use the same thresholds
for event detection in both smart home and office. IoTCuUPID
correctly detects events with an average precision and recall
of 95.8% and 83%, and uses these detected events to extract
matching inter-event timings for group key establishment. We
note that IoTCuPID’s event detection may not capture some
events with very small influence on the sensor data, resulting
in a lower recall rate. Yet, the high precision detection of
high impact events ensures IOTCUPID extracts a sufficient
number of inter-event timings for group key establishment.
Smart Home Deployment Results. Table 5 presents the
event detection results of the 4 sensors in the smart home.
All sensors detect events with a high precision and recall.

TABLE 6: Smart office event detection results.

Event Sources [Sensors | Precision [Recall
@® Sound | 1.0 0.97

® Sound2 0.91 0.86

® Illuminance 0.98 0.64

© door-open/close @ Gyroscope 1.0 1.0
® Temperature 0.84 0.42

® Humidity 0.98 0.44

@ 1light-on/off ® Illuminance 1.0 1.0
@® Sound | 1.0 0.71

@ coffee-machine-on ® Sound2 1.0 0.71
@ Power Meter 1.0 1.0

. ® Temperature 0.8 0.55

@ radiator-on/off ® Humidity 0.75 033

ool
=)

e
®

2
o

ig
L
%
LI e i :
© 0-0 6-0 00 00 0-60 6-0 0-0 0-0 60 6-0 0-0 8-0 60 6--0 0-0

(a) (b)
Figure 7: (a) Precision and (b) recall with varying distance
between sensors and the event sources.

Precision

o
S

2
N

H
]
H
|
|
|
L
0

0.0

For instance, all sensors detect the door-open/close events
with a precision and recall greater than 0.9. Thus, these
sensors can use the door events to successfully establish a
group key. Additionally, we found that the events’ influence
on the sensor data is relatively large compared to the
ambient noise such as disturbances from the home occupant’s
activities, resulting in a high event detection accuracy.

Smart Office Deployment Results. Table 6 shows the
precision and recall rate for the 7 sensors in the smart office.
All sensors detect events with high precision. The recall rate
is also high for gyroscope, coffee power meter, and sound
sensors for all events. Yet, the temperature and humidity
sensors yield a lower recall rate for the radiator-on/off
and door-open/close events. This low recall is attributed
to the relatively small influence of these events on sensor
measurements, compared to the ambient changes in the
temperature and humidity levels, particularly due to the un-
controlled disturbances from four office occupants’ activities.
Similarly, although the illuminance sensor accurately detects
light-on/off, its recall is lower for the door-open/close
events. This is because the change in illuminance caused
by some events occurring during the day is insignificant
compared to the ambient lighting in the office. Despite the
low recall rate, these sensors’ high precision event detection
ensures that they can still correctly extract sufficient inter-
event timings for participating in group pairing.

Impact of Distance on Event Detection. We conduct
additional experiments in the smart home to demonstrate
varying sensors’ locations impact on event detection. We vary
the devices’ distance from the event sources between 1 to 5
m. Figure 7 shows the precision and recall for the detected
events at different distances. IoTCuPID’s threshold-based
signal detection lets most sensors detect all events correctly
even when their distance from the event source increases.
We find that the influence of door events on temperature

0.8

Precision

0.4{ EZE0 #-events=10
N #-events=20
0.2| EEE #-events=30
EEm #-events=40

. #-events=20
0.2{ B #-events=30
N #-events=40

© © © 0 ©6 0 ©
(a) (b)

Figure 8: (a) Precision and (b) recall with varying number

of events used for sensor calibration.

and humidity sensors slightly deteriorates with an increased
distance. This is because the short duration of the door
events results in a small change in temperature and humidity,
making it difficult to detect the events at a longer distance.

Impact of Number of Events on Sensor Calibration. We
analyze how the number of events used for sensor cali-
bration (i.e., determining sensor thresholds and parameters)
impacts IoTCUPID’s event detection accuracy. We perform
this analysis on the smart office dataset since it is collected
in a noisy environment with a higher variance in the events’
influence on the sensor data. Figure 8 shows the precision
and recall rates for the detected events with an increasing
number of events used for calibration. Both the precision
and recall increase with more event calibration data as it
improves the generalization of determined signal thresholds
in detecting different event types. All sensors detect events
with a precision higher than 0.8. Sensors that only detect a
single event type require fewer events to achieve accurate
detection. For instance, the coffee power meter and gyroscope
need less than 10 events for high precision and recall.

5.2. Context Extraction and Key Agreement

We evaluate IoOTCuPID’s efficacy in context extraction
and key establishment by analyzing events’ entropy and then
present the groups of securely paired sensors. IOTCUPID’S
fuzzy clustering enables deriving four matching inter-event
timings among six sensors when only 13 or fewer events
are detected by each device.

Entropy Analysis. We analyze the events’ entropy to deter-
mine how many bits of security each inter-event timing pro-
vides with different quantization windows (W). This window
is used in IOTCuUPID’s encoding to address slight deviations
in inter-event timings extracted by different devices. This
analysis is required to determine the number of inter-event
timings sufficient to securely pair the devices. We found
inter-event timings provide enough entropy, even with larger
windows, that can be used in IoTCupID’s key establishment.

Previous works model event arrivals as a Poisson process,
and thus, inter-event timings’ probability density function
follows a gamma distribution [6], [49], [50]. Hence, we fit
a gamma distribution on the inter-event timings to compute
their entropies. Figure 9 shows the cumulative distribution
function (CDF) of the inter-event timings of the events sensed
by multiple devices (door events in the smart home and door
and coffee events in the smart office). From this, an adversary

Probabilty (COF)

Probabilty (CDF)

2000
Smart Home Door's Int

(a)

(3 1000 3000 4000 5000 o
tor- imi

0 0s
Inter-event Timing (s) ‘Smart Offce Coffeo Machine's i

()

1 2 3 45 6
Smart Office Door's Inter-event Timing (5) ;¢

()
Figure 9: CDF of inter-event timings for (a) smart home’s
door events, (b) smart office’s door, and (c) coffee events.

o

>

>

» o 2

% % &

£ Fuzzy C-Means| £ Fuzzy C-Means| - £ Fuzzy C-Means|

£ glfrkeMeans £ g [mKeMeans ~ i |FK-Means

k3 i3 e €4

5 § - g

2 2 - 2

%6 34 D 3

3 3 -~ 3

2 £ - £3

o 4 53 S =

2 2 [, 2

£ £ b=

§ 2

g 2 £2 2

= = =

3o 5y 54

* 5 10 15 20 25 @ * 10 20 30 40 * 2 4 6
of Door Events # of Door Events # of Coffee Events

(a) (b) (©

Figure 10: # of matching inter-event timings for (a) smart
home’s door events, (b) smart office’s door, and (c) coffee
machine events with K-Means and fuzzy C-Means clustering.

can uniformly sample inter-event timings from the intervals
([0, T]) that contain 95% of the timings to establish keys
with legitimate devices. In this case, the probability that
the adversary successfully guesses the inter-event timing is
W/T. Thus, an inter-event timing’s bit security is logs(T/W).
For instance, the coffee machine events in the smart office
provide log,(100500/30) = 11.71 bits of security when
the quantization window is W= 30 secs, and 95% of the
inter-event timings fall into an interval of [0, T = 100500].

Inter-event Timings Analysis. We present the similarity of
inter-event timings computed by IoTCupID from the detected
events after event clustering. Our analysis shows that sensors
influenced by the same event types extract a sufficient number
of matching inter-event timings. We determine the number
of equivalent inter-event timings from the events sensed by
multiple devices (door events in the smart home and door
and coffee machine events for the smart office) as they can
derive group keys with these timings.

Figure 10 shows the number of matching inter-event
timings extracted by each sensor with an increasing number
of events. We compute the inter-event timings for smart home
door events with a quantization window W = 8 seconds to
account for the differences in sensor sampling rates. Based
on our entropy analysis, for the smart home sensors, only
four matching inter-event timings are sufficient to achieve 32-
bit password security. This enables four sensors influenced
by door events to derive a secure group key with matching
inter-event timings from less than 10 detected events.

For the smart office events, we use a larger quantization
window W = 60 seconds due to the larger number of devices
and higher ambient noise. Since the door and coffee events
in the smart office offer a higher entropy (See Figure 9),
four similar inter-event timings are sufficient to securely
pair the devices despite the larger quantization window. The
six smart office sensors sensing the door events establish a
group key with only 13 door events. Even though the recall
rate of temperature and humidity sensors for door events is

11

TABLE 7: Event detection results for malicious devices.

Event Sources | Sensors [Precision [Recall
Sound 0.0 0.0
Tlluminance 0.0 0.0
© door-open/close Temperature 0.0 0.0
Humidity 0.0 0.0
@ light-on/off Tlluminance 1.0 0.2
@ coffee-machine-on Sound 0.0 0.0
. Temperature 0.0 0.0
@ radiator-on/off Humidity 00 0.0

Advanced attacker devices include a Snowball Black Ice USB microphone, a TSL2560
illuminance sensor and a BME 680 temperature and humidity sensor.

relatively low, the correctly detected events are sufficient for
these devices to derive the group key. The number of coffee
events required to pair the sound sensors and the coffee
power meter is even smaller, as shown in Figure 10c.

Comparison of K-means with Fuzzy C-Means. Figure 10
shows the effect of using K-Means instead of fuzzy clustering
in distinguishing event types. K-Means takes longer to extract
the same number of matching inter-event timings for door
events in the smart office as it clusters concurrent events into
separate event types. For instance, generating four matching
inter-event timings among the six sensors needs 13 detected
door events with fuzzy C-Means clustering while it takes 20
events with K-Means. The inter-event timings generated for
the door events in the home and coffee events in the office
are similar for the two methods since their timings do not
overlap with the other events in the datasets.

Group-to-group Communication. I[0TCUPID supports
group-to-group communication where devices that do not
share a key can securely communicate over a common device.
In the smart office, sensors are paired into two groups,
i.e., the six sensors influenced by the door events and the
sound sensors and power meter influenced by the coffee
events. Although the power meter is not directly paired
with the illuminance, temperature, humidity, and gyroscope
sensors, it can still securely communicate with these devices
via the sound sensors. With group-to-group communication,
multiple devices that belong to various groups can broker
communication between devices in different groups. Thus,
unlike centralized IoT systems, [OTCuPID does not rely on
a single device for secure communication.

5.3. Security Analysis

We evaluate IoTCupPID against eavesdropping attacks
where an attacker tries to sense the events from outside. We
conduct experiments in the smart home by placing sound,
illuminance, temperature and humidity sensors outside the
front door to simulate attacker devices (D4). We deploy
two types of D4 equipped with: (a) off-the-shelf sensors
with the same capabilities as the smart home devices, and
(b) advanced sensors that are more powerful and expensive
compared to the inside sensors. Our experiments show that
D4 can only detect events with a precision and recall rate
of 0.125 and 0.025 on average. Thus, an attacker is unable
to extract sufficient inter-event timings for pairing.

Table 7 demonstrates the average event detection results
for the two types of D 4. We found that both the normal
and advanced D 4’s sound, temperature and humidity sensors

@
S

@
S

a
=]
o
o

IS
S
N
S)

n
=]

Key Establishment Time (ms)
S &

Key Establishment Time (ms)
@
o

=)
o

o
o

0 5 10 15 20 2 4 6 8

Number of Devices Number of Events
(@ (b)
Figure 11: Key establishment time overhead with (a) varying
number of devices when number of event types is 4, (b)
varying number of event types when number of devices is 5.

cannot correctly detect any of the events that occur inside
the home; hence they cannot participate in the pairing
protocol. This is because the home walls induce a significant
distortion and attenuation in the event signals. We observe
that the illuminance sensor senses a limited light-on/off
events with a precision of 1.0. The light penetrates through
the window when the light inside the home is turned on,
especially at night when the outside ambient light is too
low. Yet, the recall rate of the illuminance sensor is 0.2,
lower than the sensors inside the home. This prevents it
from extracting sufficient inter-event timings required for
pairing with inside sensors.

We note that IoTCupID, by design, offers resiliency to
MitM, offline brute-force, denial of key exchange attacks,
and key extraction from removed devices. We show in
Section 3.4.2 that IoTCurID’s partitioned GPAKE scheme
offers provable password and group key security against a
probabilistic polynomial-time adversary conducting a MitM
or brute-force attacks [33]. To launch a denial of key
exchange attack, the adversary uses a malicious device to
enter the key establishment with random passwords. Yet,
legitimate devices still derive their group keys despite this
attack because they discard the public keys of malicious
devices as they do not share a password. Lastly, a removed
device’s keys cannot be used to communicate with legitimate
devices since the legitimate devices derive new group keys
with new inter-event timings in each key update.

5.4. Performance Evaluation

Event Detection and Context Extraction Overhead. We
evaluate IoOTCuUPID’s event detection overhead by measuring
the average time for processing and detecting events in
each sensor data window. IoTCupID takes, on average,
20.08 secs to pre-process and extract event signals when
the window size (wg) is 2 mins. From the extracted event
signals, IoTCuPID performs feature extraction in 5.66 ms and
inter-event timing extraction in 73.9 ms on average. Since
the computation overhead for signal detection and feature
extraction is negligible compared to the sensor data window
size, it does not impact the overall performance of I0TCUPID.
Group Key Establishment Overhead. We evaluate [0TCu-

PID’s key establishment overhead, the time between context
extraction to deriving group keys, with an increasing number

12

——loTCupid
—E Individual Keys

Encryption Overhead (microseconds)
o 4 M ® » o o N ©

10 20 30

Number of Dovices Number of Devices

(a) (b)
Figure 12: (a) Encryption and (b) communication cost with
IoTCupPID’s group keys and Perceptio’s individual keys.

40

)

10 50 0

of devices and event types. Figure 11 shows the computation
time where we run our protocol 100 times and compute the
average and standard deviation of the timings. [OTCUPID can
efficiently pair a large number of devices with inter-event
timings extracted from multiple event types. For instance,
with 4 event types and 20 devices, the computation overhead
is 39.04 £+ 13.78 ms (= 39M CPU cycles), and with 10
event types and 5 devices, the overhead is 20.77 4 7.32 ms
(=~ 20.8M CPU cycles). The overhead increases linearly with
the number of devices (See Figure 11a) and event types
(See Figure 11b). This is because the communication rounds
and elliptic curve scalar multiplications dominate the time
overhead, and their number increases linearly.

Memory Usage. IoTCUPID requires each device to temporar-
ily store the data received from other devices during the
group key establishment protocol’s communication rounds.
This corresponds to 96 * X % Y Bytes, where X is the
number of event types and Y is the number of devices. For
instance, when there are 100 devices that sense 10 event
types, the memory usage of each device is 93.75 KB, which
is acceptable even for low-end IoT devices.

Encryption and Communication Cost. We evaluate [0oTCu-
PID’s encryption and communication cost with a varying
number of devices (See Section 5.5 for comparison with
individual keys). We run the encryption scheme for a 32-byte
message 100 times. We observe IoTCUPID’s secure channels
incur 0.214+0.005 ms (= 0.2M CPU cycles). Figure 12 shows
that IoTCuPID’s computation overhead and communication
cost are constant with an increasing number of devices as
the devices communicate with a group key.

We also evaluate [OTCUPID’s group-to-group communi-
cation cost when devices that do not share a key securely
communicate over a common device that they share a key
with. This requires one additional decryption and encryption
operation, which takes 0.42 £ 0.007 ms.

5.5. Comparison with Prior Work

Among existing pairing approaches, only two works,
T2Pair [12] and Perceptio [6], can pair heterogeneous IoT
devices. T2Pair requires users to swipe screens Or press
buttons on devices and uses the timings of these actions
as evidence for pairing. Given the need for active user in-
volvement, quantitatively comparing T2Pair with IOTCUPID is
infeasible. Therefore, we discuss its strengths and weaknesses
in comparison to IOTCUPID in Section 7.

Perceptio [6], similar to IOTCUPID, leverages inter-event
timings from various sensing modalities as evidence of co-
presence to pair devices. It detects events for only instantly
influenced sensors and leverages a fuzzy commitment scheme
to establish individual keys among devices with similar inter-
event timings. Below, we quantitatively compare I0TCUPID
with Perceptio.

Paired Devices. We compare the number of devices paired
using [oTCurip and Perceptio in our evaluation setup.
Perceptio can only pair 7 out of the 11 devices (63%)
in the two IoT environments while IoTCuPID pairs all of
them. Perceptio can only pair instant sensors but cannot
detect events for continuously influenced sensors since it
cannot capture the gradual changes in sensor values (as
described in Section 3.2). For instance, Perceptio cannot
pair the temperature and humidity sensors with the other
devices even though they commonly sense the door events. In
contrast, IOTCupID detects the events for both instantaneously
and continuously influenced sensors and pairs all six devices
in the smart office influenced by the door events.

Pairing Time. To compare IoTCuUPID and Perceptio’s pairing
time, we assume the time required to extract inter-event
timings is same for both systems and compare their entropy
bits required to defend against offline attacks. Since Perceptio
relies on fuzzy commitment, it requires 128-bit entropy
whereas IoTCUPID requires 32-bit entropy due to its resilience
to offline brute-force attacks. Thus, IoTCUPID requires 4 X
less matching inter-event timings, resulting in 4x faster
pairing compared to fuzzy commitment-based pairing proto-
cols. Moreover, [OTCUPID extracts correct inter-event timings
using a fewer number of events. Particularly, for smart office’s
door events, IoTCuPID extracts four matching inter-event
timings from 13 occurred events whereas Perceptio requires
20. This translates into 54% faster pairing with IoTCUPID.

Secure Communication Cost. We compare [0TCUPID’S
computation and communication cost with Perceptio’s when a
device aims to broadcast a single 32-Byte message. IoTCUPID
incurs a constant overhead, whereas Perceptio’s overhead
linearly increases due to its pairwise individual keys [6]
(Figure 12). Particularly, a device needs to encrypt the
message one by one with all the individual keys and then send
it to the other devices individually. For instance, broadcasting
a message to 50 devices takes on average 0.21 ms and
requires transmitting 32-Byte with IoTCuPID’s group key,
while it takes on average 6.73 ms and requires transmitting
1600-Byte with Perceptio’s individual keys. We note that
linear overhead is inherent in any pairing protocol that
establishes pairwise individual keys. On the contrary, with
IoTCuPID’s group keys, the device encrypts the message
only once with the group key and broadcasts it.

6. Limitations and Discussion

Handling Mismatches in Inter-event Timings. IoTCuPID
requires concatenating four inter-event timings in a password
to provide enough entropy for group key establishment.
However, inter-event timings of sensors that sense the same

13

event may not always match (e.g., due to a sensor missing
an event). This would create discrepancies in the passwords
and prevent them from establishing a key.

To address such mismatches, we initially considered
integrating a private set intersection (PSI) protocol [51] into
IoTCupID for devices to determine which inter-event timings
they should use for their passwords. However, since the
universal set of possible inter-event timings is small (e.g., 28-
2'2), an adversary can enter the PSI protocol with many inter-
event timings to learn the benign devices’ timings. Thus, we
let devices enter our group key establishment protocol with
all combinations of their inter-event timings, allowing them
to use the matching ones to derive keys. We set an upper
limit (ny) on the number of inter-event timings the device
should extract before entering key establishment to ensure
the number of combinations does not hurt the protocol’s
scalability. For instance, when n, = 10, the number of
devices is 20, and the number of event types is 4, it takes,
on average, ~ 8 secs to run our key establishment protocol.

Deployment Considerations. IoTCUPID uses window-based
pre-processing and sensor thresholds for event detection
and identifies the optimal parameters for clustering via
statistical methods [26]. In practice, IOTCuPID’s calibration
for determining these parameters can be performed in two
ways: (a) offline by device manufacturers or (b) online by
IoT service provider at the time of device installation. For
the offline calibration, device manufacturers may calibrate
sensors by (1) generating commonly occurring events in
IoT deployments or (2) using publicly available smart home
datasets [18], [19], [52], [53], [54] that include different
sensors’ measurements corresponding to common events.

We show in Section 5.1 that parameters extracted from
a publicly available dataset [18] are transferable across
IoT deployments. Yet, some IoT environments may include
unique event types or may be exposed to environmental
disturbances, distinct from typical IoT environments. In
such cases, the manufacturer determined parameters may
require fine-tuning for the specific deployment. For this,
calibration can be initiated by IoT service providers by
recording timestamps of various events occurring in the
IoT deployment for a given amount of time (a few hours is
sufficient, detailed in Section 5.1). Both of these calibration
methods do not require any information about the event types.
Each device only needs the sensor data and the timestamps
at which events occurred to determine its parameters.

Resourceful Attackers. IoTCUPID is resilient against normal
and advanced eavesdropping attackers (Section 5.3). Yet, an
attacker may have access to devices with asymmetric capabil-
ities (e.g., x-ray vision). We do not consider such attackers
as they could already visualize and reveal users’ private
activities, independent of our pairing protocol. Moreover, an
outside attacker may attempt to inject signals to the inside
sensors to pair with them or disrupt the pairing process.
For this, the attacker may use electromagnetic interference
(EMI), acoustic injection, and inaudible voice attacks [55],
[56], [57]. Yet, such attacks require a high amplitude signal,
which is difficult to achieve since outside signals experience

a high attenuation from the walls (as shown in Section 5.3).
Besides, these attacks can be identified by anomaly detection
and prevented by shielding techniques [58], [59], [60], [61].

Pairing in Large Spaces. We demonstrate in Section 5.1
that IOTCuUPID can successfully pair devices at a distance
of up to Hm. In large indoor spaces, some devices may be
located far away from event sources and may not be able to
sense the same events as other devices and establish the same
group keys. However, such devices may share group keys
with common devices (e.g., a nearby device paired with far
away devices) or there may exist transient devices that have
a view of different areas of the room (e.g., an illuminance
sensor in a dining area may view both the kitchen and living
room) and can sense the events occurring in each. These
devices can then use the inter-event timings of the commonly
observed events as evidence and act as a bridge between the
groups in two distant areas for secure communication.

Rarely/Regularly Occurring Events. Although a few fre-
quent events (e.g., door-open/close) commonly sensed by
sensors are enough to establish group keys, some sensors
may only detect rarely occurring events (e.g., a laundry
washer’s power meter). Such rarely occurring events would
cause longer pairing times. Devices equipped with such
sensors would need additional sensors (e.g., a microphone)
that measure diverse events to timely pair with other devices.

Contrarily, some events may regularly occur in an IoT
environment (e.g., smart home door opening at 9 am every
day) and may be predictable by attackers. However, it is
extremely difficult to predict successive timestamps of such
events at a fine granularity. Thus, given that IoTCUPID’s
group key establishment concatenates multiple inter-event
timings of a given event type as evidence of co-presence
and event detection accuracy is very low for attacker devices
(Section 5.3), an attacker cannot extract evidences matching
with the legitimate devices.

Impact of Environmental Noise. We develop a signal
threshold-based event detection approach where we subtract
the sensor readings’ mean value in the preceding window
for each window and compute the absolute difference before
applying a smoothing filter for noise removal (Detailed in
Section 3.2). This allows us to accurately detect events even
with varying environmental noise. In rare cases, environ-
mental noise’s impact might be significantly higher than an
event’s physical influence, eliminating the event’s impact
on the sensor readings. Yet, this limitation is present in all
existing systems that rely on sensing physical processes.

7. Related Work

Human-in-the-loop-based Pairing. Initial methods leverage
mobile phone cameras and 2D barcodes to establish keys [62].
Mayrhofer et al. propose pairing the devices with a user
simultaneously shaking them [13]. Move2Auth requires users
to perform hand gestures by holding their smartphones in
front of the devices and uses the variations in received signal
strength for pairing [10]. Tap2Pair pairs devices through a
user synchronously tapping on a device following the patterns

14

TABLE 8: Comparison of IoTCupID with context-aware
pairing schemes for IoT devices.

Concurrent | Group [Continuous

Pairing Scheme Sensing Modality

Events | Pairing| Sensors
Schurmann et al. [17] Ambient sound X X X
Mathur et al. [64] Wireless signal X X X
Miettinen et al. [15] ‘Ambient sound or light X X X
Rostami et al. [16] Heart beat X X X
FastZIP [5] Accelerometer, Gyroscope, Barometer X X X
Perceptio [6] Heterogeneous sensors X X X
ToTCuUPID Heterogeneous sensors v v v

displayed on the other device [11]. T2Pair needs users to
apply operations such as pressing a button and swiping a
touchscreen, and uses timestamps as a source of entropy [12].
SenCS pairs devices with mobile phones carried by users us-
ing the entropy from their actions (e.g., walking) [63]. These
schemes need human involvement which only allows pairwise
device pairing, incurring a huge manual effort from users
with an increasing number of devices. Automating these user
actions would require specialized equipment (e.g., robotic
arms); thus, impractical for typical IoT environments.

Context-aware Pairing. To address the limitations of above
approaches, context-aware pairing schemes have been pro-
posed. Table 8 compares IoTCUPID with several of them.

Schurrman et al. leverage audio context [17] and Mietti-
nen et al. [15] use fingerprints from sound and luminosity to
pair sensors. Mathur et al. [64] use similarities in the temporal
variations in wireless channels between two nearby wireless
devices as evidence. Rostami et al. [16] use the entropy ex-
tracted from heart beat signals of patients to pair implantable
medical devices with their controllers. FastZIP [5] uses sensor
fusion to construct fingerprints of shared context for intra-
car device pairing with a Fuzzy PAKE scheme. Yet, these
schemes do not support heterogeneous sensor modalities and
therefore, their use cases are limited.

Similar to IOTCupID, Perceptio [6] uses inter-event tim-
ings from heterogeneous sensing modalities as evidence for
co-presence to pair devices. Unfortunately, it does not support
pairing continuously influenced sensors (e.g., temperature
and humidity), does not support concurrent events, and only
establishes individual keys. This results in longer pairing
times to establish the keys, and linear storage, computation,
and communication overhead after the keys are established.
IoTCuprID addresses these limitations, providing a secure and
practical group pairing solution.

8. Conclusions

We introduce IOTCUPID, a secure group pairing system
for heterogeneous devices, without requiring active user
involvement. IoOTCupID exploits the fact that multiple co-
located sensors sense the same events, and the time between
subsequent event occurrences sensed by different sensors
is similar. IoOTCUPID pairs both instantly and continuously
influenced sensors, supports distinguishing concurrent events
for context extraction, and establishes group keys from
inter-event timings with partitioned GPAKE. We evaluated
IoTCuprID on two IoT environments, a smart home and smart
office, and showed that it can pair devices with diverse
sensing modalities with minimal overhead.

Acknowledgment

We thank our shepherd and the anonymous reviewers for

their comments and suggestions. This work has been partially
supported by the National Science Foundation (NSF) under
grant CNS-2144645 and Office of Naval Research (ONR)
under grant N00014-20-1-2128. The views expressed are
those of the authors only.

References

(1]

(2]

(3]

(4]

[3]

(6]

(71

(8]

[91

[10]

(11]

[12]

[13

—

[14]

[15]

[16]

M. Fomichev, F. Alvarez, D. Steinmetzer, P. Gardner-Stephen, and
M. Hollick, “Survey and systematization of secure device pairing,”
IEEE Communications Surveys & Tutorials, 2017.

A. Kumar, N. Saxena, G. Tsudik, and E. Uzun, “A comparative study
of secure device pairing methods,” Pervasive and Mobile Computing,
20009.

I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz, and J. Lopez,
“A survey of IoT-enabled cyberattacks: Assessing attack paths to
critical infrastructures and services,” IEEE Communications Surveys
& Tutorials, 2018.

W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and
Y. Zhang, “Discovering and understanding the security hazards in the
interactions between IoT devices, mobile apps, and clouds on smart
home platforms,” in USENIX Security, 2019.

M. Fomichev, J. Hesse, L. Almon, T. Lippert, J. Han, and M. Hollick,
“Fastzip: Faster and more secure zero-interaction pairing,” in Inter-
national Conference on Mobile Systems, Applications, and Services,
2021.

J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y.
Noh, P. Zhang, and P. Tague, “Do you feel what i hear? enabling
autonomous IoT device pairing using different sensor types,” in /EEE
Symposium on Security and Privacy (S&P), 2018.

R. Roman, J. Zhou, and J. Lopez, “On the features and challenges
of security and privacy in distributed internet of things,” Computer
Networks, 2013.

E. Fernandes, J. Jung, and A. Prakash, “Security analysis of emerging
smart home applications,” in I[EEE Symposium on Security and Privacy
(S&P), 2016.

“Openthread,” "https://openthread.io/’, 2022, [Online; accessed 30-Jul-
2022].

J. Zhang, Z. Wang, Z. Yang, and Q. Zhang, “Proximity based IoT
device authentication,” in /EEE Conference on Computer Communi-
cations (INFOCOM), 2017.

T. Zhang, X. Yi, R. Wang, Y. Wang, C. Yu, Y. Lu, and Y. Shi, “Tap-
to-pair: Associating wireless devices with synchronous tapping,” ACM
Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018.

X. Li, Q. Zeng, L. Luo, and T. Luo, “T2pair: Secure and usable
pairing for heterogeneous IoT devices,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2020.

R. Mayrhofer and H. Gellersen, “Shake well before use: Intuitive
and secure pairing of mobile devices,” IEEE Transactions on Mobile
Computing, 2009.

M. K. Chong, R. Mayrhofer, and H. Gellersen, “A survey of user
interaction for spontaneous device association,” ACM Computing
Surveys (CSUR), 2014.

M. Miettinen, N. Asokan, T. D. Nguyen, A.-R. Sadeghi, and M. Sob-
hani, “Context-based zero-interaction pairing and key evolution for
advanced personal devices,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2014.

M. Rostami, A. Juels, and F. Koushanfar, “Heart-to-heart (H2H)
authentication for implanted medical devices,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2013.

15

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

D. Schiirmann and S. Sigg, “Secure communication based on ambient
audio,” in IEEE Transactions on Mobile Computing, 2011.

S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event
verification in smart homes,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2019.

S. Birnbach, S. Eberz, and 1. Martinovic, “Haunted house: physical
smart home event verification in the presence of compromised sensors,”
ACM Transactions on Internet of Things, 2021.

Z. B. Celik, G. Tan, and P. D. McDaniel, “loTGuard: Dynamic
enforcement of security and safety policy in commodity IoT.” in
NDSS, 2019.

M. O. Ozmen, X. Li, A. Chu, Z. B. Celik, B. Hoxha, and X. Zhang,
“Discovering physical interaction vulnerabilities in IoT deployments,”
in ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2022.

M. O. Ozmen, R. Song, H. Farrukh, and Z. B. Celik, “Evasion attacks
and defenses on smart home physical event verification,” in NDSS,
2023.

H. Farrukh, T. Yang, H. Xu, Y. Yin, H. Wang, and Z. B. Celik, “S3:
Side-channel attack on stylus pencil through sensors,” Interactive,
Mobile, Wearable and Ubiquitous Technologies (UbiComp), 2021.

H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
Interdisciplinary Reviews: Computational Statistics, 2010.

J. C. Bezdek, R. Ehrlich, and W. Full, “FCM: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, 1984.

C. M. Bishop, Pattern recognition and machine learning. Springer,
2006.

M. A. Khan and K. Salah, “IoT security: Review, blockchain solutions,
and open challenges,” Future Generation Computer Systems, 2018.

M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key distribu-
tion extended to group communication,” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 1996.

Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” in International
Conference on the Theory and Applications of Cryptographic Tech-
niques, 2004.

A. Juels and M. Wattenberg, “A fuzzy commitment scheme,” in
ACM SIGSAC Conference on Computer and Communications Security
(CCS), 1999.

M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval, ‘Password-
based group key exchange in a constant number of rounds,” in
International Workshop on Public Key Cryptography, 2006.

M. Abdalla and D. Pointcheval, “A scalable password-based group key
exchange protocol in the standard model,” in International Conference
on the Theory and Application of Cryptology and Information Security,
2006.

D. Fiore, M. I. G. Vasco, and C. Soriente, “Partitioned group password-
based authenticated key exchange,” The Computer Journal, 2017.

H. Chan, A. Perrig, and D. Song, “Random key predistribution schemes
for sensor networks,” in IEEE Symposium on Security and Privacy
(S&P), 2003.

L. Eschenauer and V. D. Gligor, “A key-management scheme for dis-
tributed sensor networks,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2002.

J. Lee and D. R. Stinson, “Deterministic key predistribution schemes
for distributed sensor networks,” in International Workshop on Selected
Areas in Cryptography, 2004.

D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography. Springer Science & Business Media, 2006.

“tsfresh,” https://tsfresh.readthedocs.io/en/latest/, 2022, [Online; ac-
cessed 15-Jul-2022].

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

(591

[60]

“Scikit-fuzzy,” https://pythonhosted.org/scikit-fuzzy/, 2022, [Online;
accessed 15-Jul-2022].

S. Aranganayagi and K. Thangavel, “Clustering categorical data using
silhouette coefficient as a relocating measure,” in /IEEE International
Conference on Computational Intelligence and Multimedia Applica-
tions, 2007.

R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number
of clusters in a data set via the gap statistic,” Journal of the Royal
Statistical Society, 2001.

C. Costello and P. Longa, “Fourq: Four-dimensional decompositions
on a g-curve over the mersenne prime,” in International Conference on
the Theory and Application of Cryptology and Information Security,
2015.

J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3
proposal blake,” Submission to NIST, 2008.

Y. Nir and A. Langley, “ChaCha20 and Poly1305 for IETF protocols,”
Internet Engineering Task Force, 2015.

“Fourqlib,” https://github.com/microsoft/FourQlib, 2022, [Online; ac-
cessed 24-Jul-2022].

“Blake2,” https://github.com/BLAKE2/1ibb2, 2022, [Online; accessed
24-Jul-2022].

“Chachapoly,” https://github.com/grigorig/chachapoly, 2022, [Online;
accessed 24-Jul-2022].

“Zeromq,” https://zeromq.org/, 2022, [Online; accessed 24-Jul-2022].

A. Ihler, J. Hutchins, and P. Smyth, “Adaptive event detection with time-
varying poisson processes,” in ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2006.

T. Mahmud, M. Hasan, A. Chakraborty, and A. K. Roy-Chowdhury, “A
poisson process model for activity forecasting,” in /EEE International
Conference on Image Processing (ICIP), 2016.

M. Rosulek and N. Trieu, “Compact and malicious private set
intersection for small sets,” in ACM SIGSAC Conference on Computer
and Communications Security (CCS), 2021.

H. Alemdar, H. Ertan, O. D. Incel, and C. Ersoy, “Aras human
activity datasets in multiple homes with multiple residents,” in /EEE
International Conference on Pervasive Computing Technologies for
Healthcare and Workshops, 2013.

D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “Casas:
A smart home in a box,” Computer, 2012.

T. Van Kasteren, A. Noulas, G. Englebienne, and B. Krose, “Accurate
activity recognition in a home setting,” in International Conference
on Ubiquitous Computing, 2008.

J. Mao, S. Zhu, and J. Liu, “An inaudible voice attack to context-
based device authentication in smart IoT systems,” Journal of Systems
Architecture, 2020.

T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut:
Waging doubt on the integrity of mems accelerometers with acoustic
injection attacks,” in IEEE European Symposium on Security and
Privacy (Euro S&P), 2017.

Y. Tu, S. Rampazzi, B. Hao, A. Rodriguez, K. Fu, and X. Hei, “Trick
or heat? manipulating critical temperature-based control systems using
rectification attacks,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2019.

C. Fu, Q. Zeng, and X. Du, “Hawatcher: Semantics-aware anomaly
detection for appified smart homes,” in USENIX Security, 2021.

I. Giechaskiel and K. Rasmussen, “Taxonomy and challenges of out-
of-band signal injection attacks and defenses,” I[EEE Communications
Surveys & Tutorials, 2019.

A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: a
context-aware security framework for smart home systems,” in Annual
Computer Security Applications Conference (ACSAC), 2019.

16

355 35
—~ 35 —_
e g34 5
0345 e
=] 3
s ®
(93 34 [
g g 34
(o} (T}
=335 =
33 335
4.4 46 4.8 5 44 46 48 5
Time (s) 10% Time (s) %10
(@) (b)

Figure 13: Sensor data (a) before and (b) after pre-processing.

[61] Y. Zhang and K. Rasmussen, “Detection of electromagnetic interfer-
ence attacks on sensor systems,” in /EEE Symposium on Security and
Privacy (S&P), 2020.

J. M. McCune, A. Perrig, and M. K. Reiter, “Seeing-is-believing:
Using camera phones for human-verifiable authentication,” in /EEE
Symposium on Security and Privacy (S&P), 2005.

[62]

[63] C. Li, X. Ji, B. Wang, K. Wang, and W. Xu, “Sencs: Enabling real-
time indoor proximity verification via contextual similarity,” ACM

Transactions on Sensor Networks (TOSN), 2021.

S. Mathur, R. Miller, A. Varshavsky, W. Trappe, and N. Mandayam,
“Proximate: proximity-based secure pairing using ambient wireless
signals,” in International Conference on Mobile Systems, Applications,
and Services, 2011.

[64]

Appendix A.
Sensor Data Pre-processing

Figure 13 shows an example of the temperature sensor
signal before and after IoTCUPID’s pre-processing during
event detection. As a result, the signal becomes smoother
and amenable for event detection.

Appendix B.
Partitioned GPAKE Security Analysis

Following [33], we provide a formal security analysis
of the partitioned GPAKE protocol. We first define two
security properties, key secrecy and password-privacy. Key
secrecy means that assuming the passwords (evidences) are
distributed uniformly at random and only a constant number
of passwords can be checked by the adversary on each
online attack, the probability that the adversary can derive a
group key with legitimate devices is negligible. Password-
privacy ensures that an adversary that conducts an online
attack cannot gain any information on the passwords used
by legitimate devices, including which devices actually share
the same password. We provide a proof sketch below, and
refer to [33] for the full proof. We note that we reduce our
protocol’s security to computational elliptic curve Diffie-
Hellmann (ECDH) instead of traditional computational DH
in [33], although the reductions remain the same.
Theorem 1. Let the encryption scheme in Table 2 be
both unforgeable and chosen plaintext semantically-secure.
Then, the protocol in Table 2 is a correct partitioned group
password-authenticated key exchange scheme that achieves
key secrecy and password-privacy under the elliptic curve

computational Diffie-Hellman assumption in the random
oracle and ideal cipher model.

Proof Sketch. Correctness. In an honest execution of the par-
titioned GPAKE protocol where no adversaries are involved,
it is straightforward to verify that all devices that share the
same password derive the same session ids and a shared
group key. This follows from the fact that the devices that
share the same password first derive session keys with each
other, and then use these session keys to broadcast a random
value. The devices with the same session key can decrypt
the random values and add them to derive the group key.
All the devices that share the same password conduct these
steps, and thus, they all add the same random values shared
among them, deriving a correct group key.

Key Secrecy. An adversary can target different stages of
the protocol to gain information about the group keys.

First, we consider an adversary (A) who has a valid
tuple (d“ dj7 Xiydi7 ijdj, Tid; * Xj,dj mod q) in the
group key establishment protocol. Such an adversary can
derive the same group key with legitimate devices as it
has a valid session key. However, we show that if such an
adversary exists, we can construct another adversary (5) that
can break the computational elliptic curve Diffie-Hellman
(ECDH) assumption. Particularly, given the input of x - P
and y - P, B’s goal is to derive z - (y - P). For this, B picks
two random user indices (7 and 7) and a random execution
number. It next sets the i*" device’s X; 4, as = - P and j"
device’s X 4, as y - P. BB then uses A as a subroutine and
returns x; g4, - Xj,d, mod q. If B guesses the random user
indices and the execution number correctly, it correctly breaks
the computational ECDH problem and derives « - (y - P).
Therefore, the security of the session key of the partitioned
GPAKE protocol reduces to the hardness of the computational
ECDH problem.

We next consider an adversary who guesses a password
correctly. Such an adversary can participate in the protocol
and derive the same keys with legitimate devices by following
an honest execution of the protocol. However, assuming the
password’s are uniformly distributed, the probability of such
an adversary existing is q/2/P*! where ¢ is the number of
times the adversary can guess a password in an online attack
and [pw| is the bit-length of the password. Therefore, if the
password has a sufficient bit-length, the probability of such
an attack is negligible.

Lastly, we consider an adversary who modifies the
messages in the broadcast stages of the protocol such that
it crafts messages that can decrypt correctly by legitimate
devices to derive shared keys with them. Yet, existence
of such an adversary reduces to the unforgeability of the
encryption scheme used.

Password-privacy. The proof for password-privacy is
very similar to the one for key secrecy. This is because after
the devices encrypt their public keys using their passwords
with an unforgeable and CCA-secure encryption scheme, the
protocol messages become independent of the passwords.
Therefore, a polynomial-time adversary who has no prior
knowledge about the passwords cannot learn any information

17

about them from the protocol under the hardness of the
computational ECDH problem and the unforgeability of the
encryption scheme.

O

Following this proof, the security of IoTCUPID relies on
(1) the randomness of the passwords, (2) the hardness of the
computational elliptic curve Diffie-Hellman problem, and
(3) the security of the encryption scheme used in GPAKE.
We show in our evaluation that the inter-event timings
provide enough entropy to be used as passwords. The security
of the computational ECDH problem and used symmetric
encryption scheme are already well-established.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

